Communications in Mathematical Physics

, Volume 176, Issue 3, pp 661–680 | Cite as

Viscosity for a periodic two disk fluid: An existence proof

  • Leonid A. Bunimovich
  • Herbert Spohn


We express the momentum current (=stress) tensor for a periodic fluid with two hard disks per unit cell in terms of a single particle billiard. We establish a central limit theorem for the time-integrated stress tensor and thereby prove the existence of a strictly positive shear and bulk viscosity.


Viscosity Neural Network Statistical Physic Complex System Stress Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alder, B. J., Gass, D. M., Wainwright, T. E.: Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys.53, 3813–3826 (1970)CrossRefGoogle Scholar
  2. 2.
    Benettin, G.: Power law behaviour of Lyapunov exponents in some conservative dynamical systems. Physica D 13, 211–213 (1984)Google Scholar
  3. 3.
    Bleher, P. M.: Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J. Stat. Phys.66, 315–373 (1992)CrossRefGoogle Scholar
  4. 4.
    Bunimovich, L. A.: Decay of correlations in dynamical systems with chaotic behavior. J. Exp. Theor. Phys.89, 1452–1471 (1985)Google Scholar
  5. 5.
    Bunimovich, L. A.: Dynamical systems of hyperbolic type with singularities. In: Sinai, Ya. G. (ed.) Encyll. Math. Sci. Dynamical Systems. Vol. 2, Berlin, Heidelberg: Springer-Verlag, 1989, pp. 151–179Google Scholar
  6. 6.
    Bunimovich, L. A., Sinai, Ya. G.: The fundamental theorem in the theory of dispersed billiards. Math. USSR-Sb.19, 407–423 (1973)Google Scholar
  7. 7.
    Bunimovich, L. A., Sinai, Ya. G.: Markov partition of dispersed billiards. Commun. Math. Phys.78, 247–280 (1980); Erratum107, 357–358 (1986)CrossRefGoogle Scholar
  8. 8.
    Bunimovich, L. A., Sinai, Ya. G.: Statistical properties of the Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys.78, 479–497 (1981)Google Scholar
  9. 9.
    Bunimovich, L. A., Sinai, Ya. G., Chernov, N. I.: Morkov partitions of two-dimensional billiards. Russ. Math. Surv.45, 105–152 (1990)Google Scholar
  10. 11.
    Bunimovich, L. A., Sinai, Ya. G., Chernov, N. I.: Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv.46, 47–106 (1991)Google Scholar
  11. 11.
    Chernov, N. I.: Statistical properties of the periodic Lorentz gas. Multidimensional case. J. Stat. Phys.74, 11–53 (1994)Google Scholar
  12. 12.
    Chernov, N. I.: Limit theorems and Markov approximations for chaotic dynamical systems. Probability Theory and Related Fields (to be published)Google Scholar
  13. 13.
    Erperbeck, J. J., Wood, W. W.: Molecular dynamics techniques for hard core systems. In: Berne, B. J. (ed.) Statistical Mechanics. Modern Theoretical Chemistry. Vol. 6, New York: Plenum Press, 1977, pp. 1–40Google Scholar
  14. 14.
    Garrido, P., Gallavotti, G.: Billiard correlation functions. J. Stat. Phys.76, 549–585 (1994)Google Scholar
  15. 15.
    Ibragimov, I. A., Linnik, Yu. V.: Independent and stationary sequences of random variables. Groningen: Wolters, Noordhoff, 1971Google Scholar
  16. 16.
    Knauf, A.: Ergodic and topological properties of coulombic periodic potentials. Commun. Math. Phys.109, 1–24 (1987)CrossRefGoogle Scholar
  17. 17.
    McLennan, J. A.: Introduction to nonequilibrium statistical mechanics. Englewood Cliffs: Prentice Hall, 1989Google Scholar
  18. 18.
    Presutti, E.: A mathematical definition of the thermodynamic pressure. J. Stat. Phys.13, 301–314 (1975)CrossRefGoogle Scholar
  19. 19.
    Sinai, Ya. G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surv.25, 137–189 (1970)Google Scholar
  20. 20.
    Sinai, Ya. G.: Ergodic properties of the Lorentz gas. Funct. Anal. Appl.13, 46–59 (1979)CrossRefGoogle Scholar
  21. 21.
    Spohn, H.: Large scale dynamics of interacting particles. Berlin, Heidelberg, New York: Springer, 1991Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Leonid A. Bunimovich
    • 1
  • Herbert Spohn
    • 2
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Theoretische PhysikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations