Skip to main content
Log in

Mathematical models with exact renormalization for turbulent transport, II: Fractal interfaces, non-Gaussian statistics and the sweeping effect

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper continues the study of a model for turbulent transport with an exact renormalization theory which has recently been proposed and developed by the authors. Three important topics are analyzed with complete mathematical rigor for this model: (1) Renormalized higher order statistics of a passively advected scalar such as the pair distance distribution and the fractal dimension of interfaces, (2) the effect of non-Gaussian turbulent velocity statistics on renormalization theory, (3) the “sweeping” effect of additional large scale mean velocities. A special emphasis is placed on renormalization theory in the vicinity of the value of the analogue of the Kolmogorov-spectrum in the model. In the authors' earlier paper, it was established that the Kolmogorov value is at a phase transition boundary in the exact renormalization theory. It is found here that the qualitative model, despite its simplicity contains, in the vicinity of the Kolmogorov value, a remarkable amount of the qualitative behavior of turbulent transport which has been uncovered in recent experiments and proposed in phenomenological theories. In particular, the Richardson 4/3-law for pair dispersion and interfaces with fractal dimension defect of 2/3 occur in the model rigorously as limits when the Kolmogorov spectrum is approached as a limit from one side of the phase transition boundary; alternative corrections to the Richardson law with the same form as those proposed heuristically in the recent literature and interfaces with fractal dimension defect 1/3, occur in the model when the Kolmogorov spectrum is approached from the other side of the phase transition. It is very interesting that fractal dimension defects of roughly the value either 1/3 or 2/3 for level sets and interfaces of passive scalars have been ubiquitous in recent turbulence experiments. As regards non-Gaussian the asymptotic normality of normalized integrals (B.56) corresponding to compactly supported blobs with mean zero. The proof of this latter fact is done in the same way as Step 2, Proposition B.3, using the fact that the corresponding random processes\(\tilde V_\delta (s)\) have finite domain of dependence. This concludes the proof of Proposition B.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avellaneda, M., Majda, A. J.: Commun. Math. Phys.131, 381–429 (1990)

    Google Scholar 

  2. Avellaneda, M., Majda, A. J.: Physics of Fluids A4(1), 41–57 (1992)

    Article  Google Scholar 

  3. Avellaneda, M., Majda, A. J.: In: The dynamical systems approach to the theory of turbulence in fluid flows, Foias, C., Sell, G., Temam R. (eds.). Institute for Mathematics and its Applications. Berlin Heidelberg, New York: Springer 1991 (in press)

    Google Scholar 

  4. Avellaneda, M., Majda, A. J.: Commun. Math. Phys.,138, 339–391 (1991)

    Article  Google Scholar 

  5. Avellaneda, M., Majda, A. J.: Superballistic renormalization for turbulent transport. In: preparation

  6. Avellaneda, M., Majda, A. J.: Renormalization theory for Eddy diffusivity in turbulent transport. Submitted to Phys. Rev. Lett., 1991

  7. Boussoussan, A., Lions, J.-L., Papanicolaou, G. C.: Asymptotic analysis of periodic structures. Amsterdam: North-Holland 1978

    Google Scholar 

  8. Billingsley, P.: Convergence of probability measures. New York: John Wiley 1968

    Google Scholar 

  9. Borodin, A. N.: Theory Probab. Appl.22(3), 482–497 (1978)

    Article  Google Scholar 

  10. Bouchaud, J. P., Comptet, A., Georges, A., Le Doussal, P.: J. Phys. (Paris)48, 1445 (1987)

    Google Scholar 

  11. Bouchaud, J. P., Georges, A., Koplik, J., Provata, A., Redner, S.: Phys. Rev. Lett.64, 2503 (1990)

    Article  Google Scholar 

  12. Constantin, P.: Commun. Math. Phys.129, 241 (1990)

    Article  Google Scholar 

  13. Feller, W.: An introduction to probability theory and its applications, Vol. I, II, New York: John Wiley 1966

    Google Scholar 

  14. Forster, D., Nelson, D., Stephen, M.: Phys. Rev. A16(2), 732–749 (1977)

    Article  Google Scholar 

  15. Glimm, J., Sharp, D. H.: Preprint, Los Alamos 1990

  16. Helland, I. S.: Scand. J. Stat.9, 79–94 (1982)

    Google Scholar 

  17. Hentschel, H. G. E., Procaccia, I.: Phys. Rev. A29(3), 1461–1469 (1984)

    Article  Google Scholar 

  18. Ibragimov, A. I.: Theory Prob. Applic.7, 349–382 (1962)

    Article  Google Scholar 

  19. Kesten, H., Papanicolaou, G. C.: Commun. Math. Phys.65, 19–128 (1979)

    Article  Google Scholar 

  20. Khasminski, R. Z.: Th. Prob. Appl.5, 179–196 (1960)

    Article  Google Scholar 

  21. Koch, D. L., Brody, J. Phys. of Fluids A1, 47–51 (1989)

    Google Scholar 

  22. Kolmogorov, A. N.: Dokl. Acad. Nauka SSSR31, 538–541 (1941); J. Fluid Mech.12, 82–85 (1962)

    Google Scholar 

  23. Kozlov, S. M.: Russ. Math. Surv.40(2), 73 (1985)

    Google Scholar 

  24. Kraichnan, R.: Complex Syst.1, 805–820 (1987)

    Google Scholar 

  25. Kraichnan, R.: Phys. Fluids6, 575–598 (1987)

    Google Scholar 

  26. Lifshits, I. M., Gredeskul, S. A., Pastur, L. A.: Introduction to the theory of disordered systems. New York: Wiley-Interscience 1988

    Google Scholar 

  27. Lovejoy, S.: Science216, 185 (1982)

    Google Scholar 

  28. Matheron, G., De Marsily, G.: Water Resources Res.16, 901–907 (1980)

    Google Scholar 

  29. McComb, W. D.: The physics of fluid turbulence. Oxford Engr. Sci. Series vol.25, Oxford: Clarendon Press 1990

    Google Scholar 

  30. McKean, H. P.: Stochastic integrals. New York: London: Academic Press 1969

    Google Scholar 

  31. Meneveau, C., Sreenivasan, K. R.: Phys. Rev. Lett.59, 797 (1987)

    Article  Google Scholar 

  32. Obukhov, A. M.: J. Fluid Mech.12, 77–81 (1962)

    Google Scholar 

  33. Oelschlager, K.: Ann. Prob.16, 1084–1126 (1988)

    Google Scholar 

  34. Orey, S.: Z. Warsch. Verb. Geb.15, 249–256 (1970)

    Article  Google Scholar 

  35. Orey, S.: Duke Math. J.25, 543–546 (1958)

    Article  Google Scholar 

  36. Osada, H.: In: Proc. 4th Japan-USSR Symp. Prob. Theory, Lect. Notes in Math. vol.1021, pp. 507–517. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  37. Papanicolaou, G. C., Varadhan, S. R. S.: In: Random Fields, Coll. Math. Soc. Janos Bolyai 27. Fritz, J., Leibowitz, J. L. (eds.) pp. 835–863. Amsterdam: North-Holland 1982

    Google Scholar 

  38. Richardson, L. F.: Proc. R. Soc. Lond. Ser. A110, 709–737 (1926)

    Google Scholar 

  39. Roberts, P. H.: J. Fluid Mech.11, 257–273 (1961)

    Google Scholar 

  40. Rose, H. A.: J. Fluid Mech.81 (4), 719–734 (1977)

    Google Scholar 

  41. Williams, F.: Combustion theory. Menlo Park, CA: Benjamin Comming 1985

    Google Scholar 

  42. Yakhot, V., Orszag, S.: J. Sci. Comp.1, 3–51 (1986)

    Article  Google Scholar 

  43. Avellaneda, M., Torquato, S., Kim, I. C.: Physics of Fluids A3(8), 1880–1891 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Research partially supported by NSF-DMS-9005799, ARO-DAAL03-89-K-0039 and AFOSR 90-0090

Research partially supported by grants NSF-DMS-90-01805, ARO-DAAL03-89-K-0013, and ONR-N00014-89-J-1014

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avellaneda, M., Majda, A. Mathematical models with exact renormalization for turbulent transport, II: Fractal interfaces, non-Gaussian statistics and the sweeping effect. Commun.Math. Phys. 146, 139–204 (1992). https://doi.org/10.1007/BF02099212

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099212

Keywords

Navigation