Skip to main content
Log in

Quantum affine algebras and holonomic difference equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive new holonomicq-difference equations for the matrix coefficients of the products of intertwining operators for quantum affine algebra

representations of levelk. We study the connection opertors between the solutions with different asymptotics and show that they are given by products of elliptic theta functions. We prove that the connection operators automatically provide elliptic solutions of Yang-Baxter equations in the “face” formulation for any type of Lie algebra\(\mathfrak{g}\) and arbitrary finite-dimensional representations of

. We conjecture that these solutions of the Yang-Baxter equations cover all elliptic solutions known in the contexts of IRF models of statistical mechanics. We also conjecture that in a special limit whenq→1 these solutions degenerate again into

solutions with\(q' = \exp \left( {\frac{{2\pi i}}{{k + g}}} \right)\). We also study the simples examples of solutions of our holonomic difference equations associated to\(U_q (\widehat{\mathfrak{s}\mathfrak{l}(2)})\) and find their expressions in terms of basic (orq−)-hypergeometric series. In the special case of spin −1/2 representations, we demonstrate that the connection matrix yields a famous Baxter solution of the Yang-Baxter equation corresponding to the solid-on-solid model of statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

0. Conformal Field Theory and Quantum Groups

  • [Ab] Abe, E.: Hopf algebras. Cambridge: Cambridge University Press 1980

    Google Scholar 

  • [A] Aomoto, K.: Gauss-Mainin connection of integral of difference products. J. Math. Soc. Jpn10, 191–208 (1987)

    Google Scholar 

  • [BD] Belavin, A.A., Drinfeld, V.G.: Triangle equation and simple Lie algebras. Funct. Anal i ego Pril.16, 1–29 (1982)

    Article  Google Scholar 

  • [BPZ] Belavin, A.A., Polyakov, A.N., Zamolodchikov, A.B.: Infinite conformal symmetries in two-dimensional quantum field theory. Nulc. Phys. B241, 333–380 (1984)

    Article  Google Scholar 

  • [B] Borcherds, R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA83, 3068–3071 (1986)

    Google Scholar 

  • [Ch] Cherednik, I.: Integral solutions of trigonometric Knizhnik-Zamolodchikov equations and Kac-Moody algebras. Publ. RIMS, Kyoto Univ.27, 727–744 (1991)

    Google Scholar 

  • [DFa] Dotsenko, Vl.S., Fateev, V.A.: Conformal algebra and multipoint correlation function in 2D statistical models. Nucl. Phys. B240 [FS12], 312 (1984); Nucl. Phys. B251, 691 (1985)

    Article  Google Scholar 

  • [D1] Drinfeld, V.G.: On almost cocommutative Hopf algebras. Leningrad Math. J.1, 321–342 (1990)

    Google Scholar 

  • [D2] Drinfeld, V.G.: Quasi-Hopf algebras. Leningrad Math. J.1, 1419–1457 (1990)

    Google Scholar 

  • [FRT] Faddeev, L.D., Reshetikhin, N.Ya., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. Leningrad Math. J.1, 193–226 (1990)

    Google Scholar 

  • [FaZ] Fateev, V.A., Zamolodchikov, A.B.: ParafermionicZ N-models. Sov. J. Nucl. Phys.43, 637 (1986)

    Google Scholar 

  • [FSQ] Friedan, D., Shenker, S., Qiu, Z.: Conformal invariance, unitarity and two-dimensional critical exponents. MSRI publications Vol. 3, pp. 419–449. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  • [FHL] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs AMS (1992)

  • [FLM] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Boston: Academic Press 1988

    Google Scholar 

  • [FZ] Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. (1992)

  • [JS] Joeal, A., Street, R.: Braided monoidal categories. Macquarie math. Reports. Report No. 860081 (1986)

  • [K] Kac, V.G.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press 1990

    Google Scholar 

  • [KaL] Kazhdan, D., Lusztig, G.: Affine Lie algebras and quantum groups. Duke Math. J.62, 21–29, IMRN (1991)

    Google Scholar 

  • [KaR] Kazhdan, D., Reshetikhin, N.Yu.: Balanced categories and invariants of 3-manifolds, preprint 1991

  • [KR1] Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebra\(U_q (\mathfrak{s}\mathfrak{l}(2))\),q-orthogonal polynomials and invariants of links in Infinite-dimensional Lie algebras and groups. Kac. V.G. (ed.). Singapore: World Scientific 1989

    Google Scholar 

  • [KR2] Kirillov, A.N., Reshetikhin, N.Yu.:q-Weyl group and a multiplicative formula for universalR-matrices. Commun. Math. Phys.134, 421–431 (1991)

    Article  Google Scholar 

  • [Koh] Kohno, T.: Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier37, 139–160 (1987)

    Google Scholar 

  • [Koo] Koornwinder, T.H.: Representations of the twistedSU(2) quantum group and someq-hypergeometric orthogonal polynomials. Nederl. Akad. Wetensch. Proc. Ser. A92, 97–117 (1989)

    Google Scholar 

  • [KZ] Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys. B247, 83–103 (1984)

    Article  Google Scholar 

  • [LSo] Levendorskii, S.Z., Soibelman, Y.S.: Some applications of quantum Weyl group 1. The multiplicative formula for universalR-matrix for simple Lie algebras. J. Geom. Phys.7, 1–14 (1991)

    Google Scholar 

  • [L1] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math.70, 237–249 (1988)

    Article  Google Scholar 

  • [ML] MacLane, S.: Categories for the working mathematician. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  • [MMNNU] Masuda, T., Mimachi, K., Nakagami, Y., Noumi, N., Ueno, K.: Representations of the quantum groupSU q(2) and the littleq-Jacobi polynomials. J. Funct. Anal.99, 357–386 (1991)

    Article  Google Scholar 

  • [MS] Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989)

    Article  Google Scholar 

  • [PS] Pressley, A., Segal, G., Loop Groups, Oxford Mathematical Monographs, Oxford: Clarendon Press 1986

    Google Scholar 

  • [Re1] Reshetikhin, N.Yu.: Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, I. LOMI preprint E-4-87, 1988; II. LOMI preprint E-17-87, 1988

  • [Re2] Reshetikhin, N.Yu.: Quasitriangular Hopf algebras and invariants of links. Leningrad Math. J.1, 169–188 (1989)

    Google Scholar 

  • [RT] Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys.127, 1–26 (1990)

    Article  Google Scholar 

  • [RT1] Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)

    Article  Google Scholar 

  • [Ro1] Rosso, M.: Finite dimensional representations of the quantum analogue of the eveloping algebra of a complex simple Lie algebra. Commun. Math. Phys.117, 581–593 (1988)

    Article  Google Scholar 

  • [Ro2] Rosso, M.: An analogue of P.B.W. theorem and the universalR-matrix for\(U_h \mathfrak{s}\mathfrak{l}(N + 1)\). Commun. Math. Phys.124, 307–318 (1989)

    Article  Google Scholar 

  • [S] Segal, G.: Lectures on modular functor, preprint titled “not for distribution”

  • [SoV] Soibelman, Ya., Vaksman, L.: Algebra of functions on the quantized groupSU(2). Funck. Anal. i ego Pril.22:3, 1–14 (1988)

    Google Scholar 

  • [SV1] Schechtman, V.V., Varchenko, A.N.: Arrangement of hyperplanes and Lie algebra homology. Invent. Math.106, 139–194 (1991)

    Article  Google Scholar 

  • [SV2] Schechtman, V.V., Varchenko, A.N.: Quantum groups and homology of local systems. IAS preprint (1990)

  • [TK] Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representations of braid group. Adv. Stud. Pure Math.16, 297–372 (1988)

    Google Scholar 

  • [W1] Witten, E.: Non-abelian bosonization in two dimensions. Commun. Math. Phys.92, 455–472 (1984)

    Article  Google Scholar 

  • [W2] Witten, E.: Quantum field theory and Jones polynomial. Commun. Math. Phys.121, 351–399 (1989)

    Article  Google Scholar 

1. Quantum Affine Algebras and Yangians

  • [BL] Bernard, D., LeClair, A.:q-Deformation ofSU(1, 1) conformal Ward identities andq-strings. Phys. Lett.227B, 417–423 (1989)

    Article  Google Scholar 

  • [Ch1] Cherednik, I.V.: On irreducible representations of elliptic quantumR-algebras. DANSSSR291, N1, 49–53 (1986)

    Google Scholar 

  • [CP1] Chari, V., Pressley, A.: Yangians andR-matrices, L'Enseignement Mathématique36, 267–302 (1990)

    Google Scholar 

  • [CP2] Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys.142, 261–283 (1991)

    Article  Google Scholar 

  • [CP3] Chari, V. Pressley, A.: Fundamental representations of Yangians and singularities ofR-matrices. J. Reine Angew. Math.417, 87–128 (1991)

    Google Scholar 

  • [Dr1] Drinfeld, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet. Math. Dokl.32, 254–258 (1985)

    Google Scholar 

  • [Dr2] Drinfeld, V.G.: A new realization of Yangians and quantized affine algebras. Soviet. Math. Dokl.36, 212–216 (1988)

    Google Scholar 

  • [Dr3] Drinfeld, V.G.: Quantum groups, Proc. ICM-86 (Berkeley), Vol. 1, 798, AMS (1987)

    Google Scholar 

  • [FJ] Frenkel, I.B., Jing, N.: Vertex representations of quantum affine algebras. Proc. Natl. Acad. Sci. USA85, 9373–9377 (1988)

    Google Scholar 

  • [J1] Jimbo, M.: QuantumR matrix for the generalized toda system. Commun. Math. Phys.102, 537–547 (1986)

    Article  Google Scholar 

  • [J2] Jimbo, M.: Aq-difference analogue of\(U(\mathfrak{g})\) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)

    Article  Google Scholar 

  • [J3] Jimbo, M.: Aq-analogue of\(U(\mathfrak{g}\mathfrak{l}(N + 1))\). Hecke algebra,, and the Yang-Baxter equation. Lett. Math. Phys.11, 247–252 (1986)

    Article  Google Scholar 

  • [KR] Kirillov, A.N., Reshetikhin, N.Yu.: The Yangians, Bethe ansatz and combinatorics. Lett. Math. Phys.12, 199–208 (1986)

    Article  Google Scholar 

  • [RS] Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Central extensions of quantum current groups. Lett. Math. Phys.19, 133–142 (1990)

    Article  Google Scholar 

  • [RS1] Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Factorization problem in quantum group, preprint 1991

2. Linear Difference Equations and Basic Hypergeometric Functions

  • [Ad] Adams, C.R.: On the linear ordinaryq-difference equation. Ann. Math.30, 195–205 (1929)

    MathSciNet  Google Scholar 

  • [A1] Aomoto, K.: A note on holonomicq-difference system. Algebraic analysis. I. Kashiwara, M., Kawai, T. (eds.). New York: Academic Press, 1988, pp. 25–28

    Google Scholar 

  • [A2] Aomoto, K.: Connection coefficients for Jackson integrals of extended Selberg type, preprint 1991

  • [A3] Aomoto, K.: Finiteness of a cohomology associated with certain Jackson integrals. Tôhoku Math. J.43, 75–101 (1991)

    Google Scholar 

  • [AW] Askey, R., Wilson, J.: Some basic orthogonal polynomials that generalize Jacobi polynomials. Mem. AMS54, N319 (1985)

    Google Scholar 

  • [Bi] Birkhoff, G.D.: The generalized Riemann problem for linear differential equations and the allied problems for linear difference andq-difference equations. Proc. Am. Acad. Arts Sci.49, 521–568 (1913)

    Google Scholar 

  • [C] Carmichael, R.D.: The general theory of linearq-difference equations. Am. J. Math.34, 147–168 (1912)

    Google Scholar 

  • [GR] Gasper, G., Rahman, M.: Basic hypergeometric series, Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press 1990

    Google Scholar 

  • [H1] Heine, E.: Über die Reihe .... J. Reine Angew. Math.32, 210–212 (1846)

    Google Scholar 

  • [H2] Heine, E.: Untersuchungen über die Reihe .... J. Reine Angew. Math.34, 285–328 (1847)

    Google Scholar 

  • [Ja] Jackson, F.H.: Onq-definite integrals. Quant. J. Pure Appl. Math.41, 193–203 (1910)

    Google Scholar 

  • [M] Mimachi, K.: Connection problem in holonomicq-difference system associated with a Jackson integral of Jordan-Pochhammer type. Nagoya Math. J.116, 149–161 (1989)

    Google Scholar 

  • [S] Slater, L.J.: Generalized hypergeometric functions. Cambridge: Cambridge University Press 1966

    Google Scholar 

  • [T] Trjitzinsky, W.J.: Analytic theory of linearq-difference equations. Acta. Math.61, 1–38 (1933)

    Google Scholar 

3. Integrable Models in Statistical Mechanics and Quantum Field Theory

  • [ABF] Andrews, G., Baxter, R., Forrester, P.: Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. J. Stat. Phys.35, 193–266 (1984)

    Article  Google Scholar 

  • [B1] Baxter, R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II. Equivalence to a generalized ice-type model. Ann. Phys.76, 25–47 (1973)

    Article  Google Scholar 

  • [B2] Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press 1982

    Google Scholar 

  • [Be] Bernard, D.: Hidden Yangians in 2D massive current algebras. Commun. Math. Phys. (1992)

  • [Bel] Belavin, A.A.: Nucl. Phys. B180, [FS2], 189 (1981)

    Article  Google Scholar 

  • [DJKMO] Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okada, M.: Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities. Adv. Stud. Pure Math. vol. 16, pp. 17–22. Tokyo: Kinokuniya 1988

    Google Scholar 

  • [DJMO] Date, E., Jimbo, M., Miwa, T., Okado, M.: Fusion of the eight-vertex SOS model. Lett. Math. Phys.12, 209–215 (1986); Erratum and Addendum. Lett. Math. Phys.14, 97 (1987)

    Article  Google Scholar 

  • [DJMO1] Date, E., Jimbo, M., Miwa, T., Okada, M.: Solvable lattice models. Proceedings Symposia Pure Mathematics49, 295–331 (1989)

    Google Scholar 

  • [F] Faddeev, L.D.: Integrable models in (1+1)-dimensional quantum field theory. Les Houche 1982, Elsevier Science Publ. 1984

  • [JKMO] Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: TheA (1)n face models. Commun. Math. Phys.119. 543–565 (1988)

    Article  Google Scholar 

  • [JMO] Jimbo, M., Miwa, T., Okado, M.: Solvable lattice models related to the vector representation of classical simple Lie algebras. Commun. Math. Phys.116, 507–525 (1988)

    Article  Google Scholar 

  • [KuR] Kulish, P.P., Reshetikhin, N.Yu.: Quantum linear problem for the Since-Gordon equation and higher representations. Zap. Nauch. Semin. LOMI101 (1981)

  • [KRS] Kulish, P.P., Reshetikhin, N.Yu., Sklyanin, E.K.: Yang-Baxter equation and representation theory I. Lett. Math. Phys.5, 393–403 (1981)

    Article  Google Scholar 

  • [KS] Kulish, P.P., Sklyanin, E.K.: in Integrable quantum field theories. Lect. Notes in Phys.151, 61–119. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  • [LSm] LeClair, A., Smirnov, F.A.: Infinite quantum group symmetry of fields in massive 2D quantum field theory, cornell preprint (1991)

  • [P] Pasquier, V.: Etiology of IRF models. Commun. Math. Phys.118, 355–364 (1986)

    Article  Google Scholar 

  • [RS] Reshetikhin, N.Yu., Smirnov, F.: Hidden quantum group symmetry and integrable perturbations of conformal field theories. Commun. Math. Phys.131, 157–177 (1990)

    Article  Google Scholar 

  • [Sk1] Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Func. Anal. Appl.16, 27–34 (1982)

    Google Scholar 

  • [Sk1] Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras. Funct. Anal. Appl.17, 273–284 (1983)

    Article  Google Scholar 

  • [Sm1] Smirnov, F.A.: Form factors in completely integrable models of quantum field theory. Singapore: World Scientific 1991

    Google Scholar 

  • [Sm2] Smirnov, F.A.: Dynamical Symmetries of Massive Integrable Models. RIMS-772 preprint (1991)

  • [Z] Zamolodchikov, A.B.: Int. J. Mod. Phys.3, 743 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenkel, I.B., Reshetikhin, N.Y. Quantum affine algebras and holonomic difference equations. Commun.Math. Phys. 146, 1–60 (1992). https://doi.org/10.1007/BF02099206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099206

Keywords

Navigation