Advertisement

Communications in Mathematical Physics

, Volume 144, Issue 1, pp 149–161 | Cite as

Dynamical entropy of quasi-local algebras in quantum statistical mechanics

  • Yong Moon Park
  • Hyun Hye Shin
Article

Abstract

We study the dynamical entropy in the sense of Connes, Narnhofer, and Thirring of automorphisms on quasi-local algebras in quantum statistical mechanics. We extend their Kolmogorov-Sinai type theorem for AF-algebras to quasi-local algebras which are not necessarily AF-algebras.

Keywords

Entropy Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vols. I and II. Berlin, Heidelberg, New York: Springer (1979)Google Scholar
  2. 2.
    Confeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  3. 3.
    Connes, A., Störmer, E.: Acat. Math.134, 289 (1975)Google Scholar
  4. 4.
    Connes, A.: C.R. Acad. Sci. Paris t.301 I, 1 (1985)Google Scholar
  5. 5.
    Connes, A., Narnhofer, H., Thirring, W.: Commun. Math. Phys.112, 691 (1987)Google Scholar
  6. 6.
    Emch, G.: Acta. Phys. Austr. [Suppl.]XV, 79 (1976)Google Scholar
  7. 7.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, Vols I, II. New York: Academic Press 1986Google Scholar
  8. 8.
    Kolmogorov, A.N.: Dokl. Akad. Nauk.119, 861 (1958)Google Scholar
  9. 9.
    Lieb, E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math.11, 267 (1973)Google Scholar
  10. 10.
    Narnhofer, H., Thirring, W.: From relative entropy to entropy. Fizika17, 257 (1985)Google Scholar
  11. 11.
    Narnhofer, H., Thirring, W.: Dynamical entropy and the third law of thermodynamics. Lett. Math. Phys.15, 261–273 (1988)Google Scholar
  12. 12.
    Park, Y.M.: Quantum statistical mechanics for superstable interactions; Bose-Einstein statistics. J. Stat. Phys.40, 259 (1984)Google Scholar
  13. 13.
    Park, Y.M.: Quantum statistical mechanics of unbounded continuous spin systems. J. Korean Math. Soc.22(1), 43–74 (1985)Google Scholar
  14. 14.
    Ruelle, D.: Thermodynamic formalism. Reading, MA: Addison-Wesley 1978Google Scholar
  15. 15.
    Sinai, Ya.G.: Dokl. Akad. Nauk.124,768 (1959)Google Scholar
  16. 16.
    Störmer, E., Voiculescu, D.: Entropy of, Bogoliubov automorphisms of canonical anti-commutation relations. Commun. Math. Phys.133, 521–542 (1990)Google Scholar
  17. 17.
    Takesaki, M.: Theory of operator algebra. I. Berlin, Heidelberg, New York: Springer 1979Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Yong Moon Park
    • 1
  • Hyun Hye Shin
    • 1
  1. 1.Department of MathematicsYonsei UniversitySeoulKorea

Personalised recommendations