Communications in Mathematical Physics

, Volume 144, Issue 1, pp 17–40 | Cite as

Conformal blocks of minimal models on a Riemann surface

  • G. Felder
  • R. Silvotti


We give explicit integral representations for conformal blocks of minimal models on arbitrary compact Riemann surfaces.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Riemann Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [FeiFu] Feigin, B. L., Fuchs, D. B.: Representations of the Virasoro algebra. In: Seminar on supermanifolds. Leites, D. (ed.), Reports of the Dept. Math. Stockholm Univ. (1986)Google Scholar
  2. [BPZ] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys.B241, 333–380 (1984)Google Scholar
  3. [Fel 1] Felder, G.: BRST approach to minimal models. Nucl. Phys.B317, 215–236 (1989)Google Scholar
  4. [FelS 1] Felder, G., Silvotti, R.: Free field representation of minimal models on a Riemann surface. Phys. Lett.B231, 411–416 (1989)Google Scholar
  5. [Fel 2] Felder, G.: Minimal models on a Riemann surface. In: Recent developments in conformal field theories. Randjbar-Daemi, S., Zuber, J.-B. (eds.). Singapore: World Scientific 1990Google Scholar
  6. [FelS 2] Felder, G., Silvotti, R.: Modular covariance of minimal model correlation functions. Commun. Math. Phys.123, 1–15 (1989)Google Scholar
  7. [TK] Tsuchyia, A., Kanie, Y.: Fock space representations of the Virasoro algebra-Intertwining operators. Publ. RIMS22, 259–327 (1986)Google Scholar
  8. [K] Kohno, T.: Homology of a local system on the complement of hyperplanes. Proc. Jpn Acad.62, Ser. A, 144–147 (1986)Google Scholar
  9. [DoF] Dotsenko, Vl. S., Fateev, V. A.: Conformal algebra and multipoint correlation functions in 2d statistical models. Nucl. Phys.B240 [FS12], 312–348 (1984); Fourpoint correlation functions and operator algebra in 2d conformal invariant theories with central charge ≦1. Nucl Phys.B251 [FS13], 691–734 (1985); Operator algebra of two-dimensional conformal theories with central chargeC≦1. Phys. Lett.154B, 291–295 (1985)Google Scholar
  10. [WW] Whittaker, E., Watson, G.: A course of modern analysis. Cambridge: Cambridge University Press 1940Google Scholar
  11. [HK] Hattori, A., Kimura, T.: On the Euler integral representation of hypergeometric functions in several variables. J. Math. Soc. Jpn26, 1 (1974)Google Scholar
  12. [DiPFHLS] Di Vecchia, P., Pezzella, F., Frau, M., Hornfeck, K., Lerda, A., Sciuto, S.:N-pointg-loop vertex for a free bosonic theory with vacuum charge. Nucl. Phys.B322 (1989)Google Scholar
  13. [Fr] Friedan, D.: In: Unified String Theory. Green, M., Gross, D. (eds.) Singapore: World Scientific 1986Google Scholar
  14. [VV1] Verlinde, E., Verlinde, H.: Chiral bosonisation, determinants and the string partition function. Nucl. Phys.B288, 357–396 (1987)Google Scholar
  15. [F] Fay, J. D.: Theta functions on Riemann surfaces. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  16. [DeM] Deligne, P., Mostow, M.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES63, 5 (1986)Google Scholar
  17. [So] Sonoda, H.: Sewing conformal field theories I. Nucl. Phys.B311, 401–416 (1988/89); Sewing conformal field theories II. Nucl. Phys.B311, 417–432 (1988/89)Google Scholar
  18. [MoS] Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989)Google Scholar
  19. [G] Gawędzki, K.: Wess-Zumino-Witten Conformal Field Theory, IHES/P/89/06 preprint, Lectures given at the Summer School Constructive Quantum Field Theory II, Erice 1988Google Scholar
  20. [A] Aomoto, K.: Gauss-Manin connection of integrals of difference products. J. Math. Soc. Jpn39, 191–208 (1987)Google Scholar
  21. [DaJMM] Date, E., Jimbo, M., Matsuo, A. Miwa, T.: Hypergeometric type integrals and thesl(2,ℂ) Knizhnik-Zamolodchikov equation, preprint RIMS-667 (1989)Google Scholar
  22. [Sc V] Schechtman, V. V., Varchenko, A. N.: Integral representation ofN-point conformal correlators in the WZW model, MPI Bonn/89-51 (1989)Google Scholar
  23. [FeiS V] Feigin, B. L., Schechtman, V. V., Varchenko, A. N.: On algebraic equations satisfied by correlators in Wess-Zumino-Witten models. Lett. Math. Phys.20, 291–297 (1990)Google Scholar
  24. [Ma] Matsuo, A.: An application of Aomoto-Gelfand hypergeometric functions to theSU(n) Knizhnik-Zamolodchikov equation. Commun. Math. Phys.134, 65–77 (1990)Google Scholar
  25. [L] Lawrence, R. J.: Homological representations of the Hecke algebra. Commun. Math. Phys.135, 141–191 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. Felder
    • 1
  • R. Silvotti
    • 2
  1. 1.Institut für theoretische PhysikETH-HönggerbergZürichSwitzerland
  2. 2.Mathematical Sciences Research InstituteBerkeleyUSA

Personalised recommendations