## Abstract

We study the generalizations of the well-known Lieb-Thirring inequality for the magnetic Schrödinger operator with nonconstant magnetic field. Our main result is the naturally expected magnetic Lieb-Thirring estimate on the moments of the negative eigenvalues for a certain class of magnetic fields (including even some unbounded ones). We develop a localization technique in path space of the stochastic Feynman-Kac representation of the heat kernel which effectively estimates the oscillatory effect due to the magnetic phase factor.

### Similar content being viewed by others

## References

[AC] Aharonov, Y., Casher, A.: Ground state of spin-1/2 charged particle in a two-dimensional magnetic field. Phys. Rev.

**A19**, 2461–2462 (1979)[AHS] Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J.

**45**, 847–883 (1978)[BHL] Broderix, K., Hundertmark, D., Leschke, H.: Continuity properties of Schrödinger semigroups with magnetic fields. In preparation

[C] Carmona, R.: Regularity properties of Schrödinger and Dirichlet semigroups. J. Funct. Anal.

**33**, 259–296 (1979)[CFKS] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Berlin-Heidelberg-New York: Springer-Verlag, 1987

[CdV] Colin de Verdiére, Y.: L'asymptotique de Weyl pour les bouteilles magnétiques. Commun. Math. Phys.

**105**, 327–335 (1986)[DJS] De Angelis, G.F., Jona-Lasinio, G., Sirugue, M.: Probabilistic solution of Pauli type equations. J. Phys. A: Math. Gen.

**16**, 2433–2444 (1983)[E-1993] Erdős, L.: Ground state density of the two-dimensional Pauli operator in the strong magnetic field. Lett. Math. Phys.

**29**, 219–240 (1993)[E-1994(a)] Erdős, L.: Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator. Duke Math. J.

**76**, 541–566 (1994)[E-1994(b)] Erdős, L.: Magnetic Lieb-Thirring inequalities and stochastic oscillatory integrals. Ph. D. Thesis, Princeton University, 1994

[FLL] Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. Commun. Math. Phys.

**104**, 251–270 (1986)[GS] Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Berlin: Springer, 1972

[K] Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer Verlag, 1966

[L] Lieb, E.H.: The number of bound states of one-body Schrödinger operators and the Weyl problem. In: Proceedings of Symposia in Pure Mathematics. Volume 36, 1980, pp. 241–251

[LTx] Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann. Eds. Lieb, E.H., Simon, B., Wightman, A.S., Princeton, NJ: Princeton Univ. Press, 1976, pp. 269–304

[LSY-I] Lieb, E.H., Solovej, J.P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. To appear in Commun. Pure Appl. Math.

[LSY-II] Lieb, E.H., Solovej, J.P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Commun. Math. Phys.

**161**, 77–124 (1994)[LSY-III] Lieb, E.H., Solovej, J.P., Yngvason, J.: In preparation. An announcement of the result was made in Quantum dots. To appear in the Proceedings of the International Conference on Partial Differential Equations and Mathematical Physics, held at the University of Alabama, Birmingham, March 1994

[M-1990] Matsumoto, H.: The short time asymptotics of the traces of the heat kernels for the magnetic Schrödinger operators. J. Math. Soc. Japan

**42**, 677–689 (1990)[M-1991] Matsumoto, H.: Classical and non-classical eigenvalue asymptotics for the magnetic Schrödinger operators. J. Funct. Anal.

**95**, 460–482 (1991)[MS] Miller, K., Simon, B.: Quantum magnetic Hamiltonians with remarkable spectral properties. Phys. Rev. Lett.

**44**, 1706–1707 (1980)[RS] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I–IV. New York: Academic Press, 1972–79

[S-1979] Simon, B.: Functional Integration and Quantum Physics. New York: Academic Press, 1979

[S-1979(a)] Simon, B.: Maximal and minimal Schrödinger forms. J. Operator Theory

**1**, 37–47 (1979)[S-1982] Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc.

**7**, 447–526 (1982)[S-1984] Simon, B.: Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math.

**120**, 89–118 (1984)[Sob] Sobolev, A.: The quasiclassical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field. Duke Math. J.

**74**, 319–429 (1994)[T] Tamura, H.: Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields. Osaka J. Math.

**25**, 633–647 (1988)[Y] Yor, M.: Some aspects of the Brownian motion. Prépublication No. 104 du Laboratoire de Probabilités de l'Université Paris VI, 1992

## Author information

### Authors and Affiliations

## Additional information

Communicated by Ya.G. Sinai

Work supported by the NSF grant PHY90-19433 A02, by the Alfred Sloan Foundation dissertation Fellowship and by the Erwin Schrödinger Institute for Mathematical Physics in Vienna.

## Rights and permissions

## About this article

### Cite this article

Erdős, L. Magnetic Lieb-Thirring inequalities.
*Commun.Math. Phys.* **170**, 629–668 (1995). https://doi.org/10.1007/BF02099152

Received:

Issue Date:

DOI: https://doi.org/10.1007/BF02099152