Abstract
We present a new, simple way to estimate the rate of exponential growth (Lyapunov exponent) of solutions of the finite-difference Schrödinger equation:
Heref is a non-constant real-analytic function of period 1 and α is irrational. For λ large we prove that the Lyapunov exponent is positive for every energyE in the spectrum ofH and a.e. θ. In particular, the absolutely continuous spectrum ofH is empty. In the continuum we study the quasi-periodic operator onL 2(R)
for largeK and show that for wide intervals of low energies the Lyapunov exponent is positive. The main idea, which originated from M. Herman's subharmonic argument [11], is to deform the phase θ to the complex plane. This enables us to avoid small denominator problems by moving them off the axis, making estimates much easier to perform. We recover the information for real θ using an elementary extension of Jensen's formula (subharmonicity).
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Albanese, C.: Quasiperiodic Schrödinger Operators with Pure Absolutely Continuous Spectrum. Preprint, CIMS
Aubry, S.: Solid State Sci.8, 264 (1978)
Chulaevsky, V., Delyon, F.: Purely absolutely continuous spectrum for the almost Mathieu operators. J. Stat. Phys.55, 1279–1284 (1989)
Chulaevsky, V., Sinai, Ya.: Anderson Localization for multi-frequency quasi-periodic potentials in one dimension. Commun. Math. Phys.125, 91–112 (1989)
Craig, W., Simon, B.: Subharmonicity of the Liapunov index. Duke Math. J.50, 551–560 (1983)
Delyon, F.: J. Phys. A20, L21 (1987)
Dinaburg, E., Sinai, Ya.: The one-dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl.9, 279–289 (1975)
Eliasson, L.: Floquet Solutions for the One-Dimensional Quasi-Periodic Schrödinger Equation. Preprint, University of Stockholm
Gordon, A.: Usp. Math. Nauk.31, 257 (1976) [in Russian]
Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasiperiodic potentials. Commun. Math. Phys.132 5–25 (1990)
Herman, M.: Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le charactère local d'un théorème d'Arnold et de Moser sur le tore en dimension 2. Commun. Math. Helv.58, 453–502 (1983)
Hiramoto, H., Kohmoto, M.: Phys. Rev. Lett.62, 2714 (1989)
Kunz, H., Souillard, B.: Commun. Math. Phys.78, 201–246 (1980)
Kingman, J. F. C.: Subadditive Processes, Lecture Notes in Mathematics, vol.539. Berlin, Heidelberg, New York: Springer 1976
Olver, F. W. J.: Asymptotics and Special Functions. New York: Academic Press 1974
Pastur, L.: Spectral Properties of disordered systems in one-body approximation. Commun. Math. Phys.75, 179 (1980)
Reed, M., Simon, B.: Methods of modern mathematical physics, vol. 1–4. New York: Academic Press 1982
Sarnak, P.: Spectral behavior of Quasi-periodic potentials. Commun. Math. Phys.84, 377–401 (1982)
Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys.46, 861–918 (1987)
Cycon, H.L. et al.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer 1987
Spencer, T.: The Schrödinger equation with a random potential—A mathematical review. In: Critical Phenomena, Random Systems, Gauge Theories, Les Houches, XLIII. d Osterwalder K., Stora, R. (eds.)
Surace, S.: Trans. Am. Math. Soc.320, 321 (1990)
Author information
Authors and Affiliations
Additional information
Communicated by B. Simon
Rights and permissions
About this article
Cite this article
Sorets, E., Spencer, T. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun.Math. Phys. 142, 543–566 (1991). https://doi.org/10.1007/BF02099100
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02099100