Skip to main content
Log in

Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new, simple way to estimate the rate of exponential growth (Lyapunov exponent) of solutions of the finite-difference Schrödinger equation:

$$((H - E)\psi )(n)\mathop = \limits^{def} - [\psi (n + 1) + \psi (n - 1)] + [\lambda f(\alpha n + \theta )]\psi (n).$$

Heref is a non-constant real-analytic function of period 1 and α is irrational. For λ large we prove that the Lyapunov exponent is positive for every energyE in the spectrum ofH and a.e. θ. In particular, the absolutely continuous spectrum ofH is empty. In the continuum we study the quasi-periodic operator onL 2(R)

$$H = - \frac{{d^2 }}{{dx^2 }} - K^2 [\cos x + \cos (\alpha x + \theta )]$$

for largeK and show that for wide intervals of low energies the Lyapunov exponent is positive. The main idea, which originated from M. Herman's subharmonic argument [11], is to deform the phase θ to the complex plane. This enables us to avoid small denominator problems by moving them off the axis, making estimates much easier to perform. We recover the information for real θ using an elementary extension of Jensen's formula (subharmonicity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese, C.: Quasiperiodic Schrödinger Operators with Pure Absolutely Continuous Spectrum. Preprint, CIMS

  2. Aubry, S.: Solid State Sci.8, 264 (1978)

    Google Scholar 

  3. Chulaevsky, V., Delyon, F.: Purely absolutely continuous spectrum for the almost Mathieu operators. J. Stat. Phys.55, 1279–1284 (1989)

    Google Scholar 

  4. Chulaevsky, V., Sinai, Ya.: Anderson Localization for multi-frequency quasi-periodic potentials in one dimension. Commun. Math. Phys.125, 91–112 (1989)

    Google Scholar 

  5. Craig, W., Simon, B.: Subharmonicity of the Liapunov index. Duke Math. J.50, 551–560 (1983)

    Google Scholar 

  6. Delyon, F.: J. Phys. A20, L21 (1987)

    Google Scholar 

  7. Dinaburg, E., Sinai, Ya.: The one-dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl.9, 279–289 (1975)

    Google Scholar 

  8. Eliasson, L.: Floquet Solutions for the One-Dimensional Quasi-Periodic Schrödinger Equation. Preprint, University of Stockholm

  9. Gordon, A.: Usp. Math. Nauk.31, 257 (1976) [in Russian]

    Google Scholar 

  10. Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasiperiodic potentials. Commun. Math. Phys.132 5–25 (1990)

    Google Scholar 

  11. Herman, M.: Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le charactère local d'un théorème d'Arnold et de Moser sur le tore en dimension 2. Commun. Math. Helv.58, 453–502 (1983)

    Google Scholar 

  12. Hiramoto, H., Kohmoto, M.: Phys. Rev. Lett.62, 2714 (1989)

    Google Scholar 

  13. Kunz, H., Souillard, B.: Commun. Math. Phys.78, 201–246 (1980)

    Google Scholar 

  14. Kingman, J. F. C.: Subadditive Processes, Lecture Notes in Mathematics, vol.539. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  15. Olver, F. W. J.: Asymptotics and Special Functions. New York: Academic Press 1974

    Google Scholar 

  16. Pastur, L.: Spectral Properties of disordered systems in one-body approximation. Commun. Math. Phys.75, 179 (1980)

    Google Scholar 

  17. Reed, M., Simon, B.: Methods of modern mathematical physics, vol. 1–4. New York: Academic Press 1982

    Google Scholar 

  18. Sarnak, P.: Spectral behavior of Quasi-periodic potentials. Commun. Math. Phys.84, 377–401 (1982)

    Google Scholar 

  19. Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys.46, 861–918 (1987)

    Google Scholar 

  20. Cycon, H.L. et al.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  21. Spencer, T.: The Schrödinger equation with a random potential—A mathematical review. In: Critical Phenomena, Random Systems, Gauge Theories, Les Houches, XLIII. d Osterwalder K., Stora, R. (eds.)

  22. Surace, S.: Trans. Am. Math. Soc.320, 321 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorets, E., Spencer, T. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun.Math. Phys. 142, 543–566 (1991). https://doi.org/10.1007/BF02099100

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099100

Keywords

Navigation