Advertisement

Communications in Mathematical Physics

, Volume 136, Issue 3, pp 585–597 | Cite as

Bases on multipunctured Riemann surfaces and interacting strings amplitudes

  • V. A. Sadov
Article

Abstract

The Krichever-Novikov bases are studied on Riemann surfaces with more-than-two punctures. The bases are presented and the completness theorem is proven for the case of integer (up to a common constant) momenta. Then the interacting strings are considered, the amplitudes and partition functions are obtained, comparable with that of path-integral approach. For the amplitudes the simple geometric implication is proposed.

Keywords

Neural Network Statistical Physic Complex System Partition Function Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krichever, I.M., Novikov, S.P.: Virasoro-type algebras, Riemann surfaces and structures of the soliton theory. Func. Anal. Pril.1, 46–63 (1987)Google Scholar
  2. 2.
    Krichever, I.M., Novikov, S.P.: Virasoro-type algebras, Riemann surfaces and string in Minkovski space. Func. Anal. Pril.214, 47–61 (1987)Google Scholar
  3. 3.
    Krichever, I.M., Novikov, S.P.: Virasoro-type algebras, pseudo-tensor of energy-momentum and operator expansions on the Riemann surfaces. Func. Anal. Pril.231 (1989)Google Scholar
  4. 4.
    Krichever, I.M., Novikov, S.P.: Riemann surfaces, operator fields, strings. Analogues of the Fourier-Laurent bases. Preprint IHES/P/89/26 (April 1989)Google Scholar
  5. 5.
    Krichever, I.M.: Spectral theory of two-dimensional periodic operators and its applications. Uspec. Mat. Nauk.442, 121–183 (1989)Google Scholar
  6. 6.
    Krichever, I.M.: The algebraic curves and the nonlinear equations. Uspec. Mat. Nauk.334, 215–216 (1978)Google Scholar
  7. 7.
    Polyakov, A.M.: Phys. Lett.13, 207 (1981); Belavin, A., Knizhnik, V.: Phys. Lett.168 B, 201 (1986); Morozov, A.Yu.: Phys. Lett.184 B, 171 (1987)Google Scholar
  8. 8.
    Dick, R.: Lett. Math. Phys.18, 255 (1989); Dick, R.: Holomorphic differentials on Punctured Riemann surfaces. Preprint DESY 89-097 (August 1989)Google Scholar
  9. 9.
    Schlichenmaier, M.: Central extensions and semi-infinite wedge representations of Krichever-Novikov algebras for more than two points. Preprint Manusk. Fak. Math u. Inf. Mannheim 102–1989 (September 1989)Google Scholar
  10. 10.
    Jaffe, A., Klimek, S., Lesniewski, A.: Representations of the Heisenberg algebra on a Riemann surface. Preprint HUTMP 89/B239 (April 1989)Google Scholar
  11. 11.
    Venetziano, S.: An introduction to dual models. Phys. Rep.9, 199 (1974)Google Scholar
  12. 11a.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring theory I, II. Cambridge: Cambridge University Press 1987Google Scholar
  13. 12.
    Fay, J.: Theta functions on Riemann surfaces. Lecture Notes in Mathematics, vol. 352. Berlin, Heidelberg, New York: Springer 1973Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • V. A. Sadov
    • 1
  1. 1.L.D. Landau Institut for Theoretical PhysicsMoscowUSSR

Personalised recommendations