Skip to main content
Log in

The quantum Poincaré-Birkhoff-Witt theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define and study a wide class of associative algebras in which the Poincaré-Birkhoff-Witt theorem is valid. This class includes numerous quantum algebras which recently appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnérowicz, A., Sternheimer, D.: Deformation theory and quantization. Ann. Phys.111, 61–151 (1978)

    Article  Google Scholar 

  2. Berger, R.: Algebraic quantization. Lett. Math. Phys.17, 275–283 (1989)

    Article  Google Scholar 

  3. Brylinski, J.L.: A differential complex for Poisson manifolds. J. Diff. Geom.28, 93–114 (1988)

    Google Scholar 

  4. Dixmier, J.: Algèbres enveloppantes. Paris: Gauthier-Villars 1974

    Google Scholar 

  5. Drinfel'd, V. G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet. Math. Dokl.32, 254–258 (1985)

    Google Scholar 

  6. Drinfel'd, V. G.: Quantum groups. In Proc. ICM, Berkeley, 1986. Providence, RI: Am. Math. Soc. 1988

    Google Scholar 

  7. Hayashi, T.:Q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys.127, 129–144 (1990)

    Google Scholar 

  8. Jacobson, N.: Lie algebras. New York: Wiley 1962

    Google Scholar 

  9. Jannussis, A., Brodimas, G., Sourlas, D.: Remarks on theq-quantization. Lett. Nuovo Cimento30, 123–127 (1981)

    Google Scholar 

  10. Jategaonkar, V. A.: A multiplicative analogue of the Weyl algebra. Commun. Algebra12, 1669–1688 (1984)

    Google Scholar 

  11. Jimbo, M.: Aq-difference analogue of U(\(\mathfrak{g}\)) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)

    Article  Google Scholar 

  12. Kassel, C.: L'homologie cyclique des algèbres enveloppantes. Invent. Math.91, 221–251 (1988)

    Article  Google Scholar 

  13. Kulish, P. P., Reshetikhin, N. Y.: The quantum linear problem for the sine-Gordon equation and higher representations. J. Soviet. Math.23, 2435 (1983)

    Article  Google Scholar 

  14. Kuryshkin, M. V.: Opérateurs quantiques généralisés de création et d'annihilation. Ann. Fond. L. de Broglie5, 111–125 (1980)

    Google Scholar 

  15. Lusztig, G.: Quantum groups at roots of 1. Geom. Dedi.35, 89–113 (1990)

    Google Scholar 

  16. McConnell, J. C., Robson, J. C.: Non-commutative Noetherian rings. New York: Wiley 1987

    Google Scholar 

  17. Manin, Y. I.: Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier38, 191–205 (1988)

    Google Scholar 

  18. Manin, Y. I.: Quantum groups and non-commutative geometry. Pub. Centre Rech. Math., University Montréal 1988

  19. Noumi, M., Mimachi, K.: Quantum 2-spheres and bigq-Jacobi polynomials. Commun. Math. Phys.128, 521–531 (1990)

    Article  Google Scholar 

  20. Podles, P.: Quantum spheres. Lett. Math. Phys.14, 193–202 (1987)

    Article  Google Scholar 

  21. Priddy, S. B.: Koszul resolutions. Trans. A.M.S.152, 39–60 (1970)

    Google Scholar 

  22. Rosso, M.: Groupes quantiques, représentations linéaires et applications. Thèse University Paris VII 1990

  23. Sridharan, R.: Filtered algebras and representations of Lie algebras. Trans. Am. Math. Soc.100, 530–550 (1961)

    Google Scholar 

  24. Wallisser, R.: Rationale approximation derq-Analogous der Exponentialfunktion und Irrationalitätsaussagen für diese Funktion. Arch. Math.44, 59–64 (1985)

    Article  Google Scholar 

  25. Woronowicz, S. L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. RIMS23, 117–181 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Connes

This work was supported by the Laboratoire d'Analyse Fonctionnelle et Probabilités, Institut de Mathématiques et Informatique, 43, bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, R. The quantum Poincaré-Birkhoff-Witt theorem. Commun.Math. Phys. 143, 215–234 (1992). https://doi.org/10.1007/BF02099007

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099007

Keywords

Navigation