European Child & Adolescent Psychiatry

, Volume 2, Issue 1, pp 34–43 | Cite as

Cognitive functioning in female patients with 21-hydroxylase deficiency

  • Ralf W. Dittmann
  • Michael H. Kappes
  • Marianne E. Kappes
Article

Abstract

The cognitive functioning of 27 female patients with congenital adrenal hyperplasia (CAH) (aged 11–41 yrs) and 13 of their healthy sisters (13–31 yrs) was compared using short versions of age-appropriate Wechsler scales. In contrast to other studies, neither a higher than average IQ level for CAH patients (mean: 99.0) nor for their sisters (97.7) was found. Unexpectedly, and in contrast to other reports, the subgroup of salt-wasting (SW) patients>16 yrs (N=6; mean score: 111.5) differed from their sisters as well as from simple-virilizing (SV) patients in “full IQ” (p<0.05) and subtest scorings for “Information”, “Similarities”, and “Picture Completion” (p<0.05−<0.10). SW patients displayed “more masculine” behaviour (vs. SV patients and sisters) which, in turn, was related to differential prenatal hormonal influences. No clear-cut relationships between IQ/cognitive (subtest) findings and gender-role behaviour were found.

Keywords

Congenital Adrenal Hyperplasia Spatial Ability Picture Completion Congenital Adrenal Hyperplasia Patient Congenital Adrenal Hyper 

Résumé

Le fonctionnement cognitif de 21 patientes avec une hyperplasie congénitale surrénale (âgée de 11 à 41 ans) et de 13 de leurs soeurs saines (13–31 ans) a été comparé au moyen de versions raccourcies de l'échelle de Wechsler appropriée à l'âge. En contraste avec d'autres études, il n'a été retrouvé un Q.I. plus haut que la moyenne ni pour les patientes (moyenne 99.0) ni pour leurs soeurs (moyenne 97.7). De façon inattendue, et en contraste avec d'autres études, le sous-groupe de patientes déprivées en sel (SW)>16 ans (N=6), moyenne score: 111.5) différait de leurs soeurs aussi bien en tant que patientes présentant des signes de virilsation (SV) pour le Q.I. complet (p<0.05) et les scores aux subtests “d'information”, “de similarité” et “de complément d'images” (p<0.05−0.10). Les patientes déprivées en sel (SW) montraient un comportement plus masculin (vs. SV et leurs soeurs) qui en retour était relié aux influences hormonales prénatales différentes. Il n'y avait pas de relation de différences nettes entre les résultats aux sous-tests cognitifs du Q.I. et le comportement de genre.

Zusammenfassung

27 Patientinnen mit dem Adrenogenitalen Syndrom (AGS) (11–41 J.) und 13 ihrer Schwestern (13–31 J.) wurden hinsichtlich intellektueller Funktionen verglichen (Kurzformen von HAWIK, HAWIE). Im Unterschied zu den meisten früheren Untersuchungen wurden weder für Patientinnen (mean: 99.0) noch für Kontrollen (97.7) über dem Durchschnitt liegende IQ-Werte gefunden. Im Gegensatz zur Literatur unterschied sich die Teilgruppe der Salzverlust-Patientinnen (SW)>16 J. (N=6, mean: 111.5) von den Schwestern und den Patientinnen mit einfachem AGS (SV) im “Gesamt-IQ” (p<0.05) und in den Untertests “Allgemeines Wissen”, “Gemeinsamkeiten” und “Bilderergänzen” (p<0.05−<0.10). SW-Patientinnen hatten signifikant “männlichere” Verhaltensmuster gezeigt (vs. SV-Patientinnen und Schwestern), die auf differentielle Hormoneffekte pränatal bezogen worden waren. Es fanden sich aber keine klaren Zusammenhänge zwischen IQ-bzw. Untertest-Resultaten und Ergebnissen für Geschlechtsrollenverhalten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S.W. & Ehrhardt, A.A. (1974). Prenatal androgen, intelligence and cognitive sex differences. In R.C. Friedman, R.M. Richart, and R.L. Van de Wiele (Eds.),Sex Differences in Behavior (pp. 53–76). New York: J. Wiley.Google Scholar
  2. Baumert, I. (1973).Untersuchungen zur diagnostischen Valenz des HAWIK und die Entwicklung einer Kurzform (WIPKI). Bern: Huber.Google Scholar
  3. Berenbaum, S.A. & Hines, M. (1989). Hormonal influences on toy preferences.The Society for Research in Child Development, Abstracts, 6, 193.Google Scholar
  4. Dahl, G. (1972).WIP, Handbuch zum Reduzierten Wechsler-Intelligenztest. Meisenheim, Germany: Hain.Google Scholar
  5. Dalton, K. (1968). Ante-natal progesterone and intelligence.British Journal of Psychiatry, 114, 1377–1382.PubMedCrossRefGoogle Scholar
  6. De Vries, G.J., De Bruin, J.P.C., Uylings, H.B.M. & Corner, M.A. (Eds.). (1984).Sex Differences in the Brain. Progress in Brain Research, Vol. 61. Amsterdam: Elsevier.Google Scholar
  7. Dittmann, R.W. (1989).Pränatal wirksame Hormone und Verhaltensmerkmale von Patientinnen mit den beiden klassischen Varianten des 21-Hydroxylase-Defektes. Frankfurt/M.: P. Lang.Google Scholar
  8. Dittmann, R.W. (in press). Body positions and movement patterns in female patients with congenital adrenal hyperplasia.Hormones & Behavior.Google Scholar
  9. Dittmann, R.W., Kappes, M.E. & Kappes, M.H. (1992). Sexual behavior in adolescent and adult females with congenital adrenal hyperplasia.Psychoneuroendocrinology, 17, 153–170.PubMedCrossRefGoogle Scholar
  10. Dittmann, R.W., Kappes, M.H., Kappes, M.E., Börger, D., Stegner, H., Willig, R.H. & Wallis, H. (1990a). Congenital adrenal hyperplasia I: Gender-related behavior and attitudes in female patients and sisters.Psychoneuroendocrinology, 15, 401–420.PubMedCrossRefGoogle Scholar
  11. Dittmann, R.W., Kappes, M.H., Kappes, M.E., Börger, D., Meyer-Bahlburg, H.F.L., Stegner, H., Willig, R.H. & Wallis, H. (1990b). Congenital adrenal hyperplasia II: Gender-related behavior and attitudes in female salt-wasting and simple-virilizing patients.Psychoneuroendocrinology, 15, 421–434.PubMedCrossRefGoogle Scholar
  12. Dörner, G. (1983). Hormone-dependent brain development.Psychoneuroendocrinology, 8, 205–212.PubMedCrossRefGoogle Scholar
  13. Ehrhardt, A.A. (1971). Der Einfluß von fötalen Hormonen auf Intelligenz und geschlechtsspezifisches Verhalten. In E. Duhm (Ed.),Praxis der Klinischen Psychologie, Bd. II (pp. 94–118). Göttingen: Hogrefe/Verlag für Psychologie.Google Scholar
  14. Ehrhardt, A.A. (1975). Prenatal homone exposure and psychosexual differentiation. In E.J. Sachar (Ed.),Topics in Psychoendocrinology (Seminars in Psychiatry Series) (pp. 67–82). New York: Grune & Stratton.Google Scholar
  15. Ehrhardt, A.A. & Baker, S.W. (1974). Fetal androgens, human central nervous system differentiation, and behavior sex differentiation. In R.C. Friedman, R.M. Richart & R.L. Van de Wiele (Eds.),Sex Differences in Behavior (pp. 33–51). New York: Wiley.Google Scholar
  16. Ehrhardt, A.A. & Baker, S.W. (1977). Males and females with congenital adrenal hyperplasia. A family study of intelligence and gender-related behavior. In P.A. Lee, L.P. Plotnick, A.A. Kowarski & C.J. Migeon (Eds.),Congenital Adrenal Hyperplasia (pp. 447–461). Baltimore: University Park Press.Google Scholar
  17. Ehrhardt, A.A., Epstein, R. & Money, J. (1968a). Fetal androgens and female gender identity in the earlytreated adrenogenital syndrome.The Johns Hopkins Medical Journal, 122, 160–167.PubMedGoogle Scholar
  18. Ehrhardt, A.A., Evers, K. & Money, J. (1968b). Influence of androgen and some aspects of sexually dimorphic behavior in women with the late-treated adrenogenital syndrome.The Johns Hopkins Medical Journal, 122, 115–122.Google Scholar
  19. Ehrhardt, A.A. & Meyer-Bahlburg, H.F.L. (1981). Effects of prenatal sex hormones on gender-related behavior.Science, 211, 1312–1318.PubMedCrossRefGoogle Scholar
  20. Ehrhardt, A.A. & Money, J. (1967). Progestin-induced hermaphroditism: IQ and psychosexual identity in a study of ten girls.Journal of Sex Research, 3, 83–100.CrossRefGoogle Scholar
  21. Hines, M. (1982). Prenatal gonadal hormones and sex differences in human behavior.Psychological Bulletin, 92, 56–80.PubMedCrossRefGoogle Scholar
  22. Hochberg, Z., Gardos, M. & Benderly, A. (1987). Psychosexual outcome of assigned females and males with 46, XX virilizing congenital adrenal hyperplasia.European Journal of Pediatrics, 146, 497–499.PubMedCrossRefGoogle Scholar
  23. Hurtig, A.L., Radhakrishnan, J., Reyes, H.M. & Rosenthal, I.M. (1983). Psychological evaluation of trented females with virilizing congenital adrenal hyperplasia.Journal of Pediatric Surgery, 18, 887–893.PubMedCrossRefGoogle Scholar
  24. Jost, A. (1983). Genetic and hormonal factors in sex differentiation of the brain.Pschoendocrinology, 8, 183–193.CrossRefGoogle Scholar
  25. Kaplan, S.A. (1990).Clinical Pediatric Endocrinology. Philadelphia: W. B. Saunders.Google Scholar
  26. Kleining, G. & Moore, H. (1968). Soziale Selbsteinstufung.Kölner Zeitschrift für Soziologie und Sozialpsychologie, 20, 502–552.Google Scholar
  27. Lev-Ran, A. (1974). Sexuality and educational levels of women with the late-treated adrenogenital syndrome.Archives of Sexual Behavior, 3, 27–32.PubMedCrossRefGoogle Scholar
  28. Lewis, V.G., Money, J. & Epstein, R. (1968). Concordance of verbal and nonverbal ability in the adrenogenital syndrome.The Johns Hopkins Medical Journal, 122, 192–195.PubMedGoogle Scholar
  29. Linn, M.C. & Petersen, A.C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis.Child Development, 56, 1479–1498.PubMedCrossRefGoogle Scholar
  30. Maccoby, E.E. & Jacklin, C.N. (1974).The Psychology of Sex Differences. Stanford: Stanford University Press.Google Scholar
  31. Matheis, M. & Förster, C. (1980). Zur psychosexuellen Entwicklung von Mädchen mit adrenogenitalem Syndrom.Zeitschrift für Kinder-und Jugendpsychiatrie, 8, 5–17.Google Scholar
  32. McGuire, L.S. & Omenn, G.S. (1975). Congenital adrenal hyperplasia. I. Family studies of IQ.Behavior Genetics, 5, 165–173.PubMedCrossRefGoogle Scholar
  33. McGuire, L.S., Ryan, K.O. & Omenn, G.S. (1975). Congenital adrenal hyperplasia. II. Cognitive and behavioral studies.Behavior Genetics, 5, 175–188.PubMedCrossRefGoogle Scholar
  34. Migeon, C.J. (1989). Diagnosis and treatment of adrenogenital disorders. In L.J. De Groot, G.M. Besser, G.F. Cahill Jr., J.C. Marshall, D.H. Nelson, W.D. Odell, J.T. Potts Jr., A.H. Rubinstein & E. Steinberger (Eds.),Endocrinology, Vol. 2 (2nd ed., pp. 1676–1704). Philadelphia: W. B. Saunders.Google Scholar
  35. Money, J. & Ehrhardt, A.A. (1972).Man and woman. Boy and girl. Baltimore: Johns Hopkins University Press.Google Scholar
  36. Money, J. & Lewis, V. (1966). IQ, genetics and accelerated growth: Adrenogenital syndrome.Bulletin of the Johns Hopkins Hospital, 118, 365–373.Google Scholar
  37. Money, J. & Schwartz, M. (1977). Dating, romantic and nonromantic friendships, and sexuality in 17 early-treated adrenogenital females, aged 16–25. In P.A. Lee, L.P. Plotnick, A.A. Kowarski & C.J. Migeon (Eds.),Congenital Adrenal Hyperplasia (pp. 419–431)., Baltimore: University Park Press.Google Scholar
  38. Naftolin, F. (Ed.). (1981). Sexual dimorphism.Science, 211, 1265–1324.CrossRefGoogle Scholar
  39. New, M.I. (Ed.). (1985). Congenital adrenal hyperplasia.Annals of the New York Academy of Science, 458.Google Scholar
  40. New, M.I. & Levine, L.S. (1981). Adrenal hyperplasia in intersex states. In N. Josso (Ed.),The Intersex Child (pp. 51–64), Basel: Karger.Google Scholar
  41. New, M.I. & Levine, L.S. (1984).Congenital Adrenal Hyperplasia. Berlin: Springer.Google Scholar
  42. Perlman, S.M. (1973). Cognitive abilities of children with hormone abnormalities: screening by psychoeducational tests.Journal of Learning Disabilities, 6, 26–34.CrossRefGoogle Scholar
  43. Quadagno, D.M., Briscoe, R. & Quadagno, J.S. (1977). Effects of perinatal gonadal hormones on selected nonsexual behavior patterns: a critical assessment of the nonhuman and human literature.Psychological Bulletin, 84, 62–80.PubMedCrossRefGoogle Scholar
  44. Reinish, J.M. (1974). Fetal hormones, the brain and human sex differences: A heuristic, integrative review of recent literature.Archives of Sexual Behavior, 3, 51–90.CrossRefGoogle Scholar
  45. Resnick, S.M. (1982).Psychological Functioning in Individuals with Congenital Adrenal Hyperplasia: Early Hormonal Influences on Cognition and Personality. Unpublished doctoral dissertation. Minneapolis: University of Minnesota.Google Scholar
  46. Resnick, S.M., Berenbaum, S.A., Gottesman, I.I. & Bouchard, T.J. Jr. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia.Developmental Psychology, 22, 191–198.CrossRefGoogle Scholar
  47. Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results.Psychological Bulletin, 86, 638–641.CrossRefGoogle Scholar
  48. Slijper, F.M.E. (1984). Androgens and gender role behaviour in girls with congenital adrenal hyperplasia (CAH). In G.J. De Vries, J.P.C. De Bruin, H.B.M. Uylings and M.A. Corner (Eds.),Sex Differences in the Brain. Progress in Brain Research, Vol. 61 (pp. 417–422). Amsterdam: Elsevier.Google Scholar
  49. Steinhausen, H.-C., Ehrhardt, A.A. & Grisanti, G.C. (1978). Die Beziehung von fötalen Geschlechtshormonen und kognitiver Entwicklung: Studien an Patienten mit adrenogenitalem Syndrom und Turner-Syndrom.Medizinische Psychologie, 4, 153–163.Google Scholar
  50. Wechsler, D. (1949).Manual for the Wechsler Intelligence Scale for Children. San Antonio, TX: The Psychological Corporation.Google Scholar
  51. Wechsler, D. (1955).Manual for the Wechsler Adult Intelligence Scale. San Antonio, TX: The Psychological Corporation.Google Scholar
  52. Wenzel, U., Schneider, M., Zachmann, M., Knorr-Mürset, G., Weber, A. & Prader, A. (1978). Intelligence of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency, their parents and unaffected siblings.Helvetica Paediatrica Acta, 33, 11–16.PubMedGoogle Scholar

Copyright information

© Hogrefe & Huber Publishers 1993

Authors and Affiliations

  • Ralf W. Dittmann
    • 1
  • Michael H. Kappes
    • 1
  • Marianne E. Kappes
    • 1
  1. 1.Psychosomatic Department, Children's HospitalUniversity of HamburgHamburg 20Germany

Personalised recommendations