Microbial Ecology

, Volume 12, Issue 4, pp 355–379 | Cite as

Modeling of the evolution of bacterial densities in an eutrophic ecosystem (sewage lagoons)

  • Marc Troussellier
  • Pierre Legendre
  • Bernard Baleux
Article

Abstract

The process of wastewater treatment was studied by modeling the relationships between physical, chemical, and biological (bacteria, phytoplankton, zooplankton) components of the sewage treatment lagoons of an urban wastewater center, based upon a two-year sampling program. The models of interactions between variables were tested by path analysis. The path coefficients were computed from the results of ridge regression, instead of linear multiple regression. The results show that fecal coliforms were effectively controlled by the environmental variables included in the model, which have a cyclic seasonal behavior. This control grew stronger with distance from the input (R2=0.71) to the output (R2=0.88) of the treatment plant, resulting in effective elimination of most enteric bacteria. Simultaneously, the ecosystem's community of aerobic heterotrophic bacteria became more independent from the model's predictive variables, with increased distance from the sewage input, thus demonstrating its maturation as an autonomous community in the lagoon ecosystem. Consequences of modeling are discussed, with respect to the understanding of biological wastewater treatment mechanisms and ecosystem dynamics and to plant management.

Keywords

Phytoplankton Sewage Wastewater Treatment Fecal Coliform Ridge Regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Public Health Association (1981) Standard methods for the examination of water and wastewater. 15th ed. The Association, Washington, DCGoogle Scholar
  2. 2.
    Angeli N (1976) Influence de la pollution des eaux sur les éléments du plancton. In: La pollution des eaux continentales: incidences sur les biocénoses aquatiques. Gauthier-Villars, Paris, PP 97–133Google Scholar
  3. 3.
    Asher HB (1976) Causal modeling. Sage University paper series on quantitative applications in the social sciences, series no. 07-003. Sage Publications, Beverly Hills, California, p 80Google Scholar
  4. 4.
    Baleux B, Troussellier M (1983) Evolution des bactéries témoins de contamination fécale et dePseudomonas aeruginosa etAeromonas hydrophyla dans un ouvrage d'épuration des eaux usées par lagunage (Mèze). Tech Sci Munic 7:33–42Google Scholar
  5. 5.
    Bölter M, Meyer-Reil LA, Dawson R, Liebezeit G, Wolter K, Szwerinski H (1981) Structure analysis of shallow water ecosystems: interaction of microbiological, chemical and physical characteristics measured in the overlying waters of sandy beach sediments. Estuar Coast Mar Sci 13:579–589Google Scholar
  6. 6.
    Buhr HO, Miller SB (1983) A dynamic model of the high-rate algal-bacterial wastewater treatment pond. Water Res 17:29–37Google Scholar
  7. 7.
    Calkins J, Buckles JD, Moeller JR (1976) The role of solar ultraviolet radiation in “natural” water purification. Photochem Photobiol 24:49–57PubMedGoogle Scholar
  8. 8.
    Clesceri LS, Bloomfield JA (1977) General model of microbial growth and decomposition in aquatic ecosystems. Appl Environ Microbiol 33:1047–1058Google Scholar
  9. 9.
    Davidson FF (1961) Antibacterial activity ofOscillatoria formosa Bory extract. Water & Sewage Works 108:417–420Google Scholar
  10. 10.
    Davis EM, Floyna EF (1972) Bacterial dieoff in ponds. San Engng Div, Proc Am Soc Civil Engrs 98:59–69Google Scholar
  11. 11.
    Dixon WJ (ed) (1981) BMDP statistical software 1981. University of California Press, BerkeleyGoogle Scholar
  12. 12.
    Fujioka RS, Hashimoto HH, Siwak EB, Young, RHF (1981) Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microbiol 41:690–696PubMedGoogle Scholar
  13. 13.
    Gifi A (1984) Nonlinear multivariate analysis. DSWO Press, LeidenGoogle Scholar
  14. 14.
    Gold HJ (1977) Mathematical modelling of biological systems: an introductory guidebook. John Wiley & Sons, New YorkGoogle Scholar
  15. 15.
    Gravel AC, Fruh EG, Davis EM (1969) Limnological investigations of Texas impoundments for water quality management purposes: the distribution of coliform bacteria in stratified impoundments. Technical Report 38, Center for Research in Water Resources, University of Texas, AustinGoogle Scholar
  16. 16.
    Hazen TC (1983) A model for the density ofAeromonas hydrophila in Albemarle Sound, North Carolina. Microb Ecol 9:137–153Google Scholar
  17. 17.
    Hocking RR (1976) The analysis and selection of variables in linear regression. Biometrics 32:1–49Google Scholar
  18. 18.
    Hossell JC, Baker JH (1979) Epiphytic bacteria of the freshwater plantRanunculus penicillatus: enumeration, distribution and identification. Arch Hydrobiol 86:322–337Google Scholar
  19. 19.
    Jones JG (1971) Studies on freshwater bacteria: factors which influence the population and its activity. J Ecol 59:593–613Google Scholar
  20. 20.
    Jones JG (1977) The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biol 7:67–91Google Scholar
  21. 21.
    Kenny DA (1979) Correlation causality. John Wiley & Sons, New YorkGoogle Scholar
  22. 22.
    Legendre L, Legendre P (1984) Ecologie numérique, 2e éd. Tome 2: La structure des données écologiques. Collection d'Ecologie, No. 13. Masson, Paris et les Presses de l'Université du QuébecGoogle Scholar
  23. 23.
    Legendre P, Baleux B, Troussellier M (1984) Dynamics of pollution-indicator and heterotrophic bacteria in sewage treatment lagoons. Appl Environ Microbiol 48:586–593PubMedGoogle Scholar
  24. 24.
    Legendre P, Troussellier M, Baleux B (1984) Indices descriptifs pour l'étude de l'évolution des communautés bactériennes. In: Bianchi A. (ed) Bactériologie marine: colloque international no. 331. Editions du CNRS, Paris, pp 71–84Google Scholar
  25. 25.
    Legendre P, Dallot S, Legendre L (1985) Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am Nat 125:257–288Google Scholar
  26. 26.
    Lilliefors HW (1967) The Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Ass 62:399–402Google Scholar
  27. 27.
    Mahloch JL (1974) Comparative analysis of modeling techniques for coliform organisms in streams. Appl Microbiol 27:340–345PubMedGoogle Scholar
  28. 28.
    Martin YP, Bianchi MA (1980) Structure, diversity and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton. Microb Ecol 5:265–279Google Scholar
  29. 29.
    Martin YP, Lelong PP (1981) Modélisation de la dynamique des communautés bactériennes d'un écosystème planctonique marin expérimental. Oceanol Acta 4:433–443Google Scholar
  30. 30.
    McCambridge J, McMeekin TA (1981) Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria. Appl Environ Microbiol 41:1083–1087PubMedGoogle Scholar
  31. 31.
    Meyer-Reil L, Dawson AR, Liebezeit G, Tiedge H (1978) Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar Biol (Berl) 48:161–171Google Scholar
  32. 32.
    Mills AL, Wassel RA (1980) Aspects of diversity measurement for microbial communities. Appl Environ Microbiol 40:578–586Google Scholar
  33. 33.
    Miyoshi H, Nakamoto K (1975) Factors influencing bacterial distribution in the sea of Hiuchi-Nada area. Bull Japan Soc Sci Fisheries 41:645–652Google Scholar
  34. 34.
    Moeller JR, Calkins J (1980) Bactericidal agents in wastewater lagoons and lagoon design. J Water Poll Control Fed 52:2442–2451Google Scholar
  35. 35.
    Mortimer CH (1956) The oxygen content of air-saturated fresh waters, and aids in calculating percentage saturation. Mitt Int Ver Theor Angew Limnol 6:1–20Google Scholar
  36. 36.
    Nie NH, Hull CH, Jenkins JG, Steinbrenner K, Bent DH (1975) SPSS—statistical package for the social sciences. 2nd ed. McGraw-Hill, New YorkGoogle Scholar
  37. 37.
    Niewolak S (1971) The influence of alcohol extracts of some algae (Chlorella andScenedesmus) on aquatic microorganisms. Polskie Arch Hydrobiol 18:31–42Google Scholar
  38. 38.
    Niewolak S (1971) The influence of living and dead cells ofChlorella vulgaris andScenedesmus obliquus on aquatic microorganisms. Polskie Arch Hydrobiol 18:43–54Google Scholar
  39. 39.
    Obenchain RL (1977) Classical F-tests and confidence regions for ridge regression. Technometrics 19:429–439Google Scholar
  40. 40.
    Oswald WJ, Gotaas HB (1955) Photosynthesis in sewage treatment. J San Engng Div, Proc Am Soc Civil Engrs 81: separate n. 686. 27 pGoogle Scholar
  41. 41.
    Palumbo AV, Ferguson RL (1978) Distribution of suspended bacteria in the Newport River estuary, North Carolina. Estuar Coast Mar Sci 7:521–529Google Scholar
  42. 42.
    Parhad NM, Rao NU (1974) Effect of pH on survival ofEscherichia coli. J Water Poll Control Fed 48:980–986Google Scholar
  43. 43.
    Pourriot R (1977) Food and feeding habits of the rotifera. Arch Hydrobiol Beih Erbegn Limnol 8:243–260Google Scholar
  44. 44.
    Pratt R, Daniels TC, Eiler JJ, Gunnison, JB, Kumler WD, Oneto JF, Strait LA, Spoehr HA, Hardin GJ, Milner HW, Smith JHC, Strain HH (1944) Chlorellin, an antibacterial substance fromChlorella. Science (Wash DC) 99:351–352Google Scholar
  45. 45.
    Rieper M (1976) Investigations on the relationships between algal blooms and bacterial populations in the Schlei Fjord (western Baltic Sea). Helgol Wiss Meeresunters 28:1–18Google Scholar
  46. 46.
    Rodier J (1978) L'analyse de l'eau, eaux naturelles, eaux résiduaires, eau de mer: chimie, physico-chimie, bactériologie, biologie. 6ième éd. Dunod, ParisGoogle Scholar
  47. 47.
    Schwinghamer P (1983) Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar Ecol Prog Ser 13:151–166Google Scholar
  48. 48.
    Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biologial research. 2nd ed. WH Freeman and Co, San FranciscoGoogle Scholar
  49. 49.
    Spencer MJ (1978) Microbial activity and biomass relationships in 26 oligotrophic to mesotrophic lakes in South Island, New Zealand. Verh Int Verein Limnol 20:1175–1181Google Scholar
  50. 50.
    Spencer MJ, Ramsay AJ (1978) Bacterial populations, heterotrophic potentials, and water quality in three New Zealand rivers. NZ J Mar Freshwat Res 12:415–427Google Scholar
  51. 51.
    Troussellier M, Baleux B (1981) Approche méthodologique pour l'analyse des peuplements bactériens hétérotrophes des étangs littoraux. Acta Oecologica Oecol Gen 2:63–74Google Scholar
  52. 52.
    Troussellier M, Legendre P (1981) A functional evenness index for microbial ecology. Microb Ecol 7:283–296Google Scholar
  53. 53.
    Väätänen P (1980) Relations of selected types of micro-organisms with the vernal phytoplankton bloom in the Tvärminne area, southern coast of Finland. J Appl Bacteriol 49:463–469Google Scholar
  54. 54.
    Väätänen P (1982) Effects of freshwater outflows on microbial populations in the Tvärminne archipelago, southern Finland. Holarct Ecol 5:61–66Google Scholar
  55. 55.
    Vela GR, Guerra CN (1966) On the nature of mixed cultures ofChlorella pyrenoidosa TX 71105 and various bacteria. J Gen Microbiol 42:123–131PubMedGoogle Scholar
  56. 56.
    Wright S (1921) Correlation and causation. J Agric Res 20:557–565Google Scholar
  57. 57.
    Wright S (1960) Path coefficients and path regressions: alternative or complementary concepts? Biometrics 16:189–202Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Marc Troussellier
    • 1
  • Pierre Legendre
    • 2
  • Bernard Baleux
    • 1
  1. 1.Laboratoire d'hydrobiologie marineUniversité des Sciences et Techniques du LanguedocMontpellier CedexFrance
  2. 2.Département de sciences biologiquesUniversité de MontréalMontréalCanada

Personalised recommendations