Hyperfine Interactions

, Volume 14, Issue 1, pp 53–88 | Cite as

Mössbauer spectroscopy of laser annealed tellurium implanted silicon (II).129I

  • G. J. Kemerink
  • H. de Waard
  • L. Niesen
  • D. O. Boerma


Laser annealed129mTc-implanted silicon has been investigated using129I Mössbauer spectroscopy. At least three dopedependent charge states of substitutional iodine are found. For heavily doped p-type Si a single line component S1, with isomer shift S=0.96(4) mm/s w. r. t. Cu129I and an effective Debye temperature ϕ′=196(3) K is observed. This component is attributed to I++. For compensated Si a single line component, S2, assigned to I+, with S=2.39 (4) mm/s and ϕ′=170 (3) K is found. For n-type Si, a component S3, characterized at 4.2 K by S=2.15 (4) mm/s and a quadrupole splitting eQVzz/h=452 (8) MHz (n≃0)is observed. At higher temperatures S3 shows quadrupole relaxation and its recoilless fraction becomes strongly anisotropic. This behaviour is explained on the basis of a transition from a static to a dynamic Jahn-Teller distortion. Component S3 has been attributed to I0. In the spectra of compensated and n-type Si a less well-defined component Q, with parameters resembling those of S3 but showing no quadrupole relaxation, is observed. This component has tentatively also been assigned to Io. The results can be understood qualitatively on the basis of a simple MO-model.


Isomer Shift Quadrupole Split Absorption Area M6ssbauer Spectrum M6ssbauer Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Tamminga, G.E.J. Eggermont, W.K. Hofker, D. Hoonhout, R. Garrett and F.W. Saris, Phys. Lett. 69A (1979) 436;ADSCrossRefGoogle Scholar
  2. [1a]
    D. Hoonhout and F.W. Saris, J. Appl. Phys. 53 (1982) 4379.ADSCrossRefGoogle Scholar
  3. [2]
    G.J. Kemerink, unpublished results (1977).Google Scholar
  4. [3]
    H. de Waard, in Mössbauer effect data index — 1973, ed. J.G. Stevens and V.E. Stevens (Plenum, New York, 1975) p. 447.Google Scholar
  5. [4]
    G.J. Kemerink, D.O. Boerma, H. de Waard and L. Niesen, Radiat. Eff. 69 (1983) 83; G.J. Kemerink, H. de Waard, L. Niesen and D.O. Boerma, Radiat. Eff. 69 (1983) 101.CrossRefGoogle Scholar
  6. [5]
    G.J. Kemerink, D.O. Boerma, H. de Waard, J.C. de Wit and S.A. Drentje, J. de phys. 41 (1980) C1–435.CrossRefGoogle Scholar
  7. [6]
    M. Blume, Phys. Rev. 174 (1968) 351.ADSCrossRefGoogle Scholar
  8. [7]
    J.A. Tjon and M. Blume, Phys. Rev. 165 (1968) 456.ADSCrossRefGoogle Scholar
  9. [8]
    G.J. Kemerink, H. de Waard, L. Niesen and D.O. Boerma, accepted for publication in Radiat. Eff.Google Scholar
  10. [9]
    A.H. Snell, in Alpha-, beta-and gamma-ray spectroscopy, ed. K. Siegbahn, vol. 2 (North-Holland, Amsterdam, 1968) p. 1545.Google Scholar
  11. [10]
    W.J.J. Spijkervet and F. Pleiter, Hyp. Int. 7 (1979) 285.ADSCrossRefGoogle Scholar
  12. [11]
    J. Ladrière, M. Cogneau and A. Moykens, J. de Phys. 41 (1980) C1–313.CrossRefGoogle Scholar
  13. [12]
    D.E. Ellis, in Mössbauer isomer shifts, ed. G.K. Shenoy and F.E. Wagner (North-Holland, Amsterdam, 1978) p. 623.Google Scholar
  14. [13]
    S.T. Pantelides and C.T. Sah, Phys. Rev. B10 (1974) 638.ADSCrossRefGoogle Scholar
  15. [14]
    T.H. Ning and C.T. Sah, Phys. Rev. B4 (1971) 3482.ADSCrossRefGoogle Scholar
  16. [15]
    H.A. Jahn and E. Teller, Proc. Roy. Soc. A161 (1937) 220.ADSCrossRefGoogle Scholar
  17. [16]
    M.D. Sturge, in Solid state physics, ed. F. Seitz, D. Turnbull and H. Ehrenreich, vol. 20 (Academic Press, 1967) p. 91.Google Scholar
  18. [17]
    F.S. Ham, Phys. Rev. 160 (1967) 328.ADSCrossRefGoogle Scholar
  19. [18]
    G.A. van der Velde, Ph.D. thesis, University of Groningen (1974).Google Scholar
  20. [19]
    D.A. Shirley, Rev. Mod. Phys. 36 (1964) 339.ADSCrossRefGoogle Scholar
  21. [20]
    F.G. Allen and G.W. Gobeli, J. Appl. Phys. 35 (1964) 597.ADSCrossRefGoogle Scholar
  22. [21]
    W. Petry, G. Vogl and W. Mansel, Phys. Rev. Lett. 45 (1980) 1862.ADSCrossRefGoogle Scholar
  23. [22]
    K.S. Singwi and A. Sjölander, Phys. Rev. 119 (1960) 863.ADSCrossRefGoogle Scholar
  24. [23]
    G. Vogl, W. Mansel and P.H. Dederichs, Phys. Rev. Lett. 36 (1976) 1497.ADSCrossRefGoogle Scholar
  25. [24]
    J.M. Grow, D.G. Howard, R.H. Nussbaum and M. Takeo, Phys. Rev. B17 (1978) 15.ADSCrossRefGoogle Scholar
  26. [25]
    J.W. Petersen, O.H. Nielsen, G. Weyer, E. Antoncik and S. Damgaard, Phys. Rev. B21 (1980) 4292.ADSCrossRefGoogle Scholar
  27. [26]
    E. Kankeleit and A. Körding, J. de Phys. 12 (1976) C6–65.Google Scholar
  28. [27]
    H.G. Grimmeiss, Ann. Rev. Mater. Sci. 7 (1977) 341.ADSCrossRefGoogle Scholar
  29. [28]
    E.L. Wolf, D.L. Losee, D.E. Cullen and W. Dale Compton, Phys. Rev. Lett. 26 (1971) 438.ADSCrossRefGoogle Scholar
  30. [29]
    H.F. Staunton, quoted by N.F. Mott, Adv. Phys. 21 (1972) 785.CrossRefGoogle Scholar
  31. [30]
    P.L. Hemment and P.R.C. Stevens, in Atomic collision phenomena in solids, ed. D.W. Palmer, M.W. Thompson and P.D. Townsend (North-Holland, Amsterdam, 1970) p. 217.Google Scholar

Copyright information

© J.C. Baltzer Scientific Publishing Company 1983

Authors and Affiliations

  • G. J. Kemerink
    • 1
  • H. de Waard
    • 1
  • L. Niesen
    • 1
  • D. O. Boerma
    • 1
  1. 1.Laboratorium voor Algemene NatuurkundeRijksuniversiteitGroningenThe Netherlands

Personalised recommendations