Advertisement

Communications in Mathematical Physics

, Volume 131, Issue 3, pp 605–617 | Cite as

At the other side of a saddle-node

  • M. Misiurewicz
  • A. L. Kawczyński
Article

Abstract

We describe phenomena occurring just before a saddle-node bifurcation for one-parameter families of interval maps. In particular, as a parameter approaches the bifurcation value, attracting periodic orbits of periodsk, k+1,k+2,k+3,... can appear. We make a detailed study of a family of “cusp-shaped” maps, where this phenomenon occurs in a pure form.

Keywords

Neural Network Statistical Physic Complex System Periodic Orbit Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB] Aicardi, F., Borsellino, A.: Statistical properties of flip-flop processes associated to the chaotic behavior of systems with strange attractors. Biol. Cybern.55, 377–385 (1987)CrossRefGoogle Scholar
  2. [CE] Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Progress in Physics, vol.1. Basel: Birkhäuser 1980Google Scholar
  3. [KML] Kawczyński, A.L., Misiurewicz, M., Leszczyński, K.: Periodic and strange attractors in a model of a chemical system. Polish J. Chem.63, 239–247 (1989)Google Scholar
  4. [LY] Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc.186, 481–488 (1973)Google Scholar
  5. [L] Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmospheric Sci.20, 130–141 (1963)CrossRefGoogle Scholar
  6. [MAE] Masełko, J., Alamgir, M., Epstein, I.R.: Bifurcation analysis of a system of coupled chemical oscillators: Bromate-chlorite-iodide. Physica19 D, 153–161 (1986)Google Scholar
  7. [MSS] Metropolis, M., Stein, M.L., Stein, P.R.: On finite limit sets for transformations on the unit interval. J. Combin. Th., Ser. A15, 25–44 (1973)Google Scholar
  8. [M] Misiurewicz, M.: Maps of an interval. Chaotic Behaviour of Deterministic Systems-Les Houches, Session 36, pp. 567–590. Amsterdam: North-Holland 1983Google Scholar
  9. [NPT] Newhouse, S., Palis, J., Takens, F.: Stable families of diffeomorphisms. Publ. Math. IHES57, 5–72 (1983)Google Scholar
  10. [P] Preston, C.: Iterates of maps on an interval. Lecture Notes in Mathematics, vol. 999. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  11. [R] Rychlik, M.: Another proof of Jakobson's theorem and related results. Ergod. Th. Dynam. Sys.8, 93–109 (1988)Google Scholar
  12. [S] Skrzypczak, J.: Embedding diffeomorphisms in flows. Preprint, Warsaw 1988Google Scholar
  13. [Y] Yoccoz, J.-C.: Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Thèse, Orsay, 1985Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Misiurewicz
    • 1
  • A. L. Kawczyński
    • 2
  1. 1.Institute of MathematicsWarsaw University, PKiNIX p.WarszawaPoland
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarszawaPoland

Personalised recommendations