Skip to main content
Log in

Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Convergence of approximate solutions derived by the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices is established by using the compensated compactness method. A global existence theorem is shown; and a numerical method for the computation of the physical global solution of this model is provided by this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baccarani, G., Wordeman, M.R.: An investigation of steady-state velocity overshoot effects in Si and GaAs devices. Solid State Electron.28, 404–416 (1985)

    Google Scholar 

  2. Bell, T.E.: The quest for ballistic action. IEEE Spectrum23, 36–38 (1986)

    Google Scholar 

  3. Blotekjer, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron DevicesED-17, 38–47 (1970)

    Google Scholar 

  4. Chen, G.-Q.: Congergence of Lax-Friedrichs scheme for isentropic gas dynamics, III. Acta Math. Sci.6, 75–120 (1986)

    Google Scholar 

  5. Chen, G.-Q.: Limit behavior of approximate solutions to conservation laws. In: Multidimensional Hyperbolic Problems and Computations. Glimm, J., Majda, A.J. (eds.), Berlin Heidelberg, New York: Springer 1991, pp. 38–57

    Google Scholar 

  6. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock-Waves. Interscience, New York: J. Wiley and Sons 1967

    Google Scholar 

  7. Degond, P., Markowich, P.A.: On a one-dimensional steady-state hydrodynamic model for semiconductors. Appl. Math. Letters3(3), 25–29 (1990)

    Google Scholar 

  8. Ding, X., Chen, G.-Q., Lou, P.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics, I, II. Acta Math. Sci.5, 415–432, 433–472 (1985)

    Google Scholar 

  9. Ding, X., Chen, G.-Q., Lou, P.: Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys.121, 63–84 (1989)

    Google Scholar 

  10. Ding, X., Chen, G.-Q., Lou, P.: A supplement of the paper Convergence of Lax-Friedrichs scheme for isentropic gas dynamics, II–III. Acta Math. Sci.9, 43–44 (1989)

    Google Scholar 

  11. Di Perna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys.91, 1–30 (1983)

    Google Scholar 

  12. Di Perna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rat. Mech. Anal.82, 27–70 (1983)

    Google Scholar 

  13. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Lecture Notes of A.M.S., 1990

  14. Gamba, I.M.: Stationary transonic solutions for a one-dimensional hydrodynamic model for semiconductors. Commun. in P.D.E.17, 553–577 (1992)

    Google Scholar 

  15. Gardner, C.L.: Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device. IEEE Transactions on Electron Devices38, 392–398 (1991)

    Google Scholar 

  16. Gardner, C.L., Jerome, J.M., Rose, Donald J.: Numerical methods for the hydrodynamic device model. IEEE Trans. Computer-Aided Design8, 501–507 (1989)

    Google Scholar 

  17. Godunov, S.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb.47, 271–360 (1959)

    Google Scholar 

  18. Lax, P.D.: Hyperbolic systems of conservation laws and mathematical theory of shock waves. Regional Conference Series in Applied Mathematics, SIAM, Philadelphia11, (1973)

  19. Lax, P.D.: Shock waves and entropy. In Contributions to Nonlinear Functional Analysis. Zarantonello, E. (ed.), New York: Academic Press 1971, pp. 603–604

    Google Scholar 

  20. Liu, T.-P.: Initial-Boundary value problems for gas dynamics. Arch. Rat. Mech. Anal.64, 137–168 (1977)

    Google Scholar 

  21. Liu, T.-P., Smoller, J.: The vacuum state in isentropic gas dynamics. Adv. Appl. Math.1, 345–359 (1980)

    Google Scholar 

  22. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Berlin, Heidelberg, New York. Springer 1990

    Google Scholar 

  23. Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis.5, 489–507 (1978)

    Google Scholar 

  24. Nishida, T., Smoller, J.: Mixed problem for nonlinear conservation laws. J. Diff. Eqs.23, 244–269 (1977)

    Google Scholar 

  25. Rudan, M., Odeh, F., White, J.: Numerical solution of the hydrodynamic model for onedimensional semiconductor device. COMPEL6, 151–170 (1987)

    Google Scholar 

  26. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  27. Takeno, S.: Initial boundary value problems for isentropic gas dynamics. Proceedings of the Royal society of Edinburgh120A, 1–23 (1992)

    Google Scholar 

  28. Tartar, L.: Compensated compactness and application to partial differential equations. In: Research Notes in Math., Nonlinear Analysis and Mechanics. Knops, R.J. (ed.), Vol. 4, New York: Pitman Press 1979

    Google Scholar 

  29. Thomann, E., Odeh, F.: Remarks on the well-posedness of the hydrodynamic model for semiconductor devices. In: Proceedings of The Sixth International Nasecde Conference. Miller, J.J.H. (ed.), Boole Press Ltd., 1989

  30. Wang, J.H.: A nonhomogeneous system of equations of nonisentropic gas dynamics. Carasso, C., Raviart, P.-A., Serre, D. (eds.) Nonlinear Hyperbolic Problems. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  31. Zhang, B.: On a local existence theorem for a one-dimensional hydrodynamic model of semiconductor devices. Technical Report No. 195, Center for Applied Mathematics, Purdue University 1992. To appear in SIAM J. Math. Anal.

  32. Zhang, B.: On the viscosity solution for a one-dimensional hyrdodynamic model for semiconductor devices. Technical Report No. 196, Center for Applied Mathematics, Purdue University, 1992, submitted to Math. Meth. Appl. Sci.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B. Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices. Commun.Math. Phys. 157, 1–22 (1993). https://doi.org/10.1007/BF02098016

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098016

Keywords

Navigation