Dislodgeable residues of ethion in Florida citrus and relationships to weather variables

  • H. N. Nigg
  • J. C. Allen
  • R. F. Brooks
  • G. J. Edwards
  • N. P. Thompson
  • Roy W. King
  • A. H. Blagg


Five different treatments of ethion on Valencia orange trees were compared for decay rates and for ethion monoxon and ethion dioxon production under different environmental conditions. The oxon metabolite levels observed were low and always below the residue level of ethion itself. There were no significant differences in the decay rates of ethion between treatments.

A model of ethion decay utilizing environmental variables as a time base is presented. This model explains 94% of the variation observed in ethion decay during very wet and very dry periods in Florida.

The application of these results and general experimental approach to worker safety reentry standards is discussed.


Ethion Environmental Variable Decay Rate Experimental Approach Oxon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. C.: A modified sine wave method for calculating degree days. Environ. Entomol.5, 388 (1976).Google Scholar
  2. Federal Register: 39 (2) 16888, 10 May (1974).Google Scholar
  3. Gunther, F. A.: Insecticide residues in California citrus fruits and products. Residue Reviews28, 1 (1969).PubMedGoogle Scholar
  4. Gunther, F. A., J. H. Barkley, and W. E. Westlake: Worker environment research. II. Sampling and processing techniques for determining dislodgeable pesticide residues on leaf surfaces. Bull. Environ. Contam. Toxicol.12, 641 (1974).PubMedGoogle Scholar
  5. Gunther, F. A., W. E. Westlake, J. H. Barkley, W. Winterlin, and L. Langbehn: Establishing dislodgeable pesticide residues on leaf surfaces. Bull. Environ. Contam. Toxicol.9, 243 (1973).PubMedGoogle Scholar
  6. Hsieh, D. P. H., H. M. Jameel, R. A. Fleck, W. W. Kilgore, M. Y. Li, and R. R. Painter: Estimation of soil parathion residues in the San Joaquin Valley, California—a simulation study, p. 199–215. In R. Haque and V. H. Freed (eds.): Environmental Dynamics of Pesticides. 387 p. Plenum Press, N.Y. (1975).Google Scholar
  7. Ivey, M. C., and H. D. Mann: Gas-liquid chromatographic determination of ethion, ethion monoxon, and ethion dioxon in tissues of turkeys and cattle. J. Agr. Food Chem.23, 319 (1975).Google Scholar
  8. Iwata, Y., and F. A. Gunther: Univ. of Calif., Riverside. “Personal communication” (1976).Google Scholar
  9. Leffingwell, J. T., R. C. Spear, and D. Jenkins: The persistence of ethion and zolone residues on grape foliage in the central valley of California. Arch. Environ. Contam. Toxicol.3, 40 (1975).PubMedGoogle Scholar
  10. Maddy, K. T.: California Dept. of Food and Agriculture. “Personal communication” (1976).Google Scholar
  11. McCoy, C. W., A. J. Hill, and G. E. Horanic: A device for measuring and recording the amount and duration of free water on vegetation in the field. J. Econ. Entomol.65, 135 (1972).Google Scholar
  12. Milby, T. H., and H. W. Mitchell: Parathion residue poisoning among orchard workers. J. Amer. Med. Ass.189, 351 (1964).Google Scholar
  13. Moilanen, K. W., D. G. Crosby, C. J. Soderquist, and A. S. Wong: Dynamic aspects of pesticide photodecomposition. In R. Haque and V. H. Freed (eds.): Environ. Dynamics of Pesticides, p. 45–60. Plenum Press, N.Y. (1975).Google Scholar
  14. Quinby, G. E., and A. B. Lemmon: Parathion residues as a cause of poisoning in crop workers. J. Amer. Med. Ass.166, 740 (1958).Google Scholar
  15. Reuther, W.: Climate and citrus behavior. In W. Reuther (ed.): Citrus Ind. pp. 281–333. Univ. of Calif. Press, Riverside (1973).Google Scholar
  16. Spear, R. C.: Univ. of Calif., Berkeley. “Personal communication” (1976).Google Scholar
  17. Spear, R. C., W. J. Popendorf, J. T. Leffingwell, and D. Jenkins: Parathion residues on citrus foliage. Decay and composition as related to worker hazard. J. Agr. Food Chem.23, 808 (1975).Google Scholar
  18. Spencer, W. F., M. M. Cliath, K. R. Davis, R. C. Spear, and W. J. Popendorf: Persistence of parathion and its oxidation to paraoxon on the soil surface as related to worker reentry into treated crops. Bull. Environ. Contam. Toxicol.14, 265 (1975).PubMedGoogle Scholar
  19. Staiff, D. C., S. W. Comer, and R. J. Foster: Residues of parathion and conversion products on apple and peach foliage resulting from repeated spray applications. Bull. Environ. Contam. Toxicol.14, 135 (1975).PubMedGoogle Scholar
  20. Ware, G. W., B. Estesen, and W. P. Cahill: Dislodgable insecticide residues on cotton. Bull. Environ. Contam. Toxicol.14, 606 (1975).PubMedGoogle Scholar
  21. Webber, H. J.: Influence of environment on citrus. The California Citrograph23, 108 (1938).Google Scholar
  22. Westlake, W. E., F. A. Gunther, and G. E. Carman: Worker environment research: dioxathion (Delnav) residues on and in orange fruits and leaves, in dislodgable particulate matter, and in the soil beneath sprayed trees. Arch. Environ. Contam. Toxicol.1, 60 (1973).PubMedGoogle Scholar
  23. Winterlin, W., J. B. Bailey, L. Langbehn, and C. Mourer: Degradation of parathion applied to peach leaves. Pesticide Monit. J.8, 263 (1975).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • H. N. Nigg
  • J. C. Allen
  • R. F. Brooks
  • G. J. Edwards
    • 1
  • N. P. Thompson
    • 2
  • Roy W. King
    • 3
  • A. H. Blagg
    • 4
  1. 1.Agricultural Research and Education CenterIFAS University of FloridaLake Alfred
  2. 2.Pesticide Residue Laboratory, Department of Food ScienceUniversity of FloridaGainesville
  3. 3.Department of ChemistryUniversity of FloridaGainesville
  4. 4.Special Analytical LaboratoryFlorida Department of Environment RegulationsWinter Haven

Personalised recommendations