Skip to main content
Log in

Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Airborne pesticide residues were collected both within and downwind from a parathion-treated plum orchard by high volume sampling through XAD-4 macroreticular resin. Levels of paraoxon in excess of 100 ng/m3 were found in orchard air, along with parathion, during the early days of two 21-day sampling studies. Paraoxon:parathion ratios in the orchard air were relatively constant, averagingca. 0.5 for days 1 to 21 following treatment. Likely sources of airborne paraoxon include vaporization and dislodgement from soil and leaf surfaces, and chemical conversion of parathion in the air. Support for the latter came from observation of an increased paraoxon:parathion ratio in air samples collected downwind from the orchard. Atmospheric conversion of parathion to paraoxon, accelerated by sunlight, was indicated by both field and laboratory studies. Overall dissipation of parathion from the orchard air, soil, and leaf tissue proceeded to a considerable extent through breakdown to paraoxon under the dry climatic conditions of these studies. Eventual conversion to the relatively stable breakdown product,p-nitrophenol, was indicated from analysis of air in the orchard vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adams, J. D., Y. Iwata, and F. A. Gunther: Worker environment research. The effect of dust derived from several soil types on the dissipation of parathion and paraoxon dislodgeable residues on citrus foliage. Bull. Environ. Contam. Toxicol.15, 547 (1976).

    PubMed  Google Scholar 

  • Anonymous: Documentation of the threshold limit values for substances in workroom air. Amer. Conf. Governmental Industrial Hygienists, Cincinnati, Ohio (1971).

  • Anonymous: Occupational safety requirements for pesticides. Fed. Reg.38, 20362 (1973).

    Google Scholar 

  • Archer, T. E.: Dissipation of parathion and related compounds from field-sprayed spinach. J. Agr. Food Chem.22, 974 (1974).

    Google Scholar 

  • Beyermann, K., and W. Eckrich: Trennung des insecticidgehaltes der luft in den aerosolgebundenen und den gasförmigen anteil. Z. Anal. Chem.269, 279 (1974).

    Google Scholar 

  • Carmen, G. E., W. E. Westlake, and F. A. Gunther: Potential residue problem associated with low volume sprays on citrus in California. Bull. Environ. Contam. Toxicol.8, 38 (1972).

    PubMed  Google Scholar 

  • Cliath, M. M., and W. F. Spencer: Dissipation of pesticides from soil by volatilization of degradation products. I. Lindane and DDT. Environ. Sci. Technol.6, 910 (1972).

    Google Scholar 

  • Cook, J. W., and N. D. Pugh: Quantitative study of cholinesterase inhibiting decomposition products of parathion formed by ultraviolet light. J. Ass. Offic. Agr. Chem.40, 277 (1957).

    Google Scholar 

  • Crosby, D. G., and K. W. Moilanen: Vapor-phase photodecomposition of aldrin and dieldrin. Arch. Environ. Contam. Toxicol.2, 62 (1974).

    PubMed  Google Scholar 

  • Crosby, D. G., K. W. Moilanen, and C. J. Soderquist: Laboratory simulation of parathion degradation in the atmosphere. Chemosphere, submitted for publication (1976).

  • Edwards, C. A.: Factors affecting the persistence of pesticides in the soil. Chem. Ind. 190 (1974).

  • Enos, H. F., J. F. Thompson, J. B. Mann, and R. F. Moseman: Determination of pesticide residues in air. 163rd National Meeting of the American Chemical Society, Boston, Mass., April (1972).

  • Frawley, J. P., J. W. Cook, J. R. Blake, and O. G. Fitzhugh: Effect of light on chemical and biological properties of parathion. J. Agr. Food Chem.6, 28 (1958).

    Google Scholar 

  • Giang, P. A., and S. A. Hall: Enzymatic determination of organic phosphorus insecticides. Anal. Chem.23, 1830 (1951).

    Google Scholar 

  • Grunwell, J. R., and R. H. Erickson: Photolysis of parathion [O,O-diethylO-(4-nitrophenyl) thiophosphate]. New Products. J. Agr. Food Chem.21, 929 (1973).

    Google Scholar 

  • Gunther, F. A., W. E. Westlake, J. H. Barkley, W. Winterlin, and L. Langbehn: Establishing dislodgeable pesticide residue on leaf surfaces. Bull. Environ. Contam. Toxicol.9, 243 (1973).

    PubMed  Google Scholar 

  • Iwata, Y., W. E. Westlake, and F. A. Gunther: Persistence of parathion in six California soils under laboratory conditions. Arch. Environ. Contam. Toxicol.1, 84 (1973).

    PubMed  Google Scholar 

  • Joiner, R. L., and K. P. Baetcke: Parathion: Persistence on cotton and identification of its photoalteration products. J. Agr. Food Chem.21, 391 (1973).

    Google Scholar 

  • Lichtenstein, E. P., and K. R. Schultz: The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion. J. Econ. Entomol.57, 618 (1964).

    Google Scholar 

  • Milby, T. H., F. Ottoboni, and H. W. Mirchell: Parathion residue poisoning among orchard workers. J. Amer. Med. Ass.189, 351 (1964).

    Google Scholar 

  • Miles, J. W., L. E. Fetzer, and G. W. Pearce: Collection and determination of trace quantities of pesticides in air. Environ. Sci. Technol.4, 420 (1970).

    Google Scholar 

  • Moilanen, K. W., and D. G. Crosby: Vapor-phase photodecomposition ofp,p′-DDT and its relatives. 165th National Meeting of the American Chemical Society, Dallas, Texas, April (1973).

  • Moilanen, K. W., D. G. Crosby, C. J. Soderquist, and A. S. Wong: Dynamic aspects of pesticide photodecomposition, In R. Haque and V. H. Freed (ed.): Environmental Dynamics of Pesticides, p. 45. New York: Plenum Press (1975).

    Google Scholar 

  • Popendorf, W. J., R. C. Spear, and S. Selvin: Collecting foliar pesticide residues related to potential exposure of workers. Environ. Sci. Technol.9, 583 (1975).

    Google Scholar 

  • Seiber, J. N., J. E. Woodrow, T. M. Shafik, and H. F. Enos: Determination of pesticides and their transformation products in air, In R. Haque and V. H. Freed (ed.): Environmental dynamics of pesticides. New York: Plenum Press (1975).

    Google Scholar 

  • Sherma, J., and T. M. Shafik: A multiclass, multiresidue analytical method for determining pesticide residues in air. Arch. Environ. Contam. Toxicol.3, 55 (1975).

    PubMed  Google Scholar 

  • Soderquist, C. J., D. G. Crosby, K. W. Moilenen, J. N. Seiber, and J. E. Woodrow: The occurrence of trifluralin and its photoproducts in air. J. Agr. Food Chem.23, 304 (1975).

    Google Scholar 

  • Spear, R. C., D. L. Jenkins, and T. H. Milby: Pesticide residues and field workers. Environ. Sci. Technol.9, 308 (1975a).

    Google Scholar 

  • Spear, R. C., W. J. Popendorf, J. T. Leffingwell, and D. Jenkins: Parathion residues on citrus foliage. Decay and composition as related to worker hazard. J. Agr. Food Chem.23, 808 (1975b).

    Google Scholar 

  • Spencer, W. F., W. J. Farmer, and M. M. Cliath: Pesticide volatilization. Residue Reviews49, 1 (1973).

    Google Scholar 

  • Thomas, T. C., and J. N. Seiber: Chromosorb 102, an efficient medium for trapping pesticides from air. Bull. Environ. Contam. Toxicol.12, 17 (1974).

    PubMed  Google Scholar 

  • Thompson, J. F. (ed.): Analysis of pesticide residues in human and environmental samples.U.S. Environmental Protection Agency, Perrine, Florida (1972).

    Google Scholar 

  • Ware, G. W., B. Estesen, and W. P. Cahill: Organophosphate residues on cotton in Arizona. Bull. Environ. Contam. Toxicol.8, 361 (1972).

    PubMed  Google Scholar 

  • Ware, G. W., D. P. Morgen, B. J. Estesen, W. P. Cahill, and D. M. Whitacre: Establishment of reentry intervals for organophosphate-treated cotton fields based on human data: I. Ethyl- and methyl parathion. Arch. Environ. Contam. Toxicol.1, 48 (1973).

    PubMed  Google Scholar 

  • Westlake, W. E., F. A. Gunther, and G. E. Carman: Worker environment research: Dioxathion (Delnav®) residues on and in orange fruits and leaves, in dislodgeable particulate matter, and in the soil beneath sprayed trees. Arch. Environ. Contam. Toxicol.1, 60 (1973).

    PubMed  Google Scholar 

  • Winterlin, W., C. Mourer, and J. B. Bailey: Degradation of four organophosphate insecticides in grape tissue. Pest. Monit. J.8, 59 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented to the Division of Pesticide Chemistry, 170th National Meeting of the American Chemical Society, Chicago, Illinois, August 29, 1975.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodrow, J.E., Seiber, J.N., Crosby, D.G. et al. Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment. Arch. Environ. Contam. Toxicol. 6, 175–191 (1977). https://doi.org/10.1007/BF02097759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097759

Keywords

Navigation