Communications in Mathematical Physics

, Volume 134, Issue 2, pp 413–419 | Cite as

Deformations and renormalisations ofW

  • D. B. Fairlie
  • J. Nuyts


Deformations of the infiniteN limit of the ZamolodchikovWN algebra are discussed. A recent one, due to Pope, Romans and Shen with non-zero central extensions for every conformal spin is shown to be formally renormalisable to one representable in Moyal bracket form. Another deformation is discovered which, like the algebra of Pope et al. possesses automatic closure, but has non-zero central extension only in the Virasoro subalgebra.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fairlie, D.B., Fletcher, P., Zachos, C.K.: Phys. Lett. B218, 203 (1989)Google Scholar
  2. 2.
    Fairlie, D.B., Zachos, C.K.: Phys. Lett. B224, 101 (1989)Google Scholar
  3. 3.
    Fairlie, D.B., Fletcher, P., Zachos, C.K.: Infinite dimensional algebras and a trigonometric basis for the classical Lie algebras. ANL HEP PR 89-64, to appear in J. Math. Phys.Google Scholar
  4. 4.
    Moyal, J.: Proc. Camb. Phil. Soc.45, 99, (1949); Baker, G.: Phys. Rev.109, 2198 (1958); Fairlier, D.B.: Proc. Camb. Phil. Soc.60, 581 (1964)Google Scholar
  5. 5.
    Bender, C.M., Dunne, G.: Phys. Rev. D40, 3504 (1989)Google Scholar
  6. 6.
    Bakas, I.: The Structure of theW algebra. Commun. Math. Phys. (to appear)Google Scholar
  7. 7.
    Zamolodchikov, A.B.: Teo. Mat. Fiz.65, 347 (1985); Fateev, V.A., Lykyanov, S.: Int. J. Mod. Phys. A3, 507 (1988)Google Scholar
  8. 8.
    Pope, C.N., Shen, X.: Phys. Lett. B236, 21 (1990)Google Scholar
  9. 9.
    Pope, C.N., Romans, L.J., Shen, X.: Phys. Lett. B236, 173 (1990)Google Scholar
  10. 10.
    Pope, C.N., Romans, L.J., Shen, X.:W and the Racah-Wigner algebra. Preprint, CTP TAMU-72/89, USC-89/HEP 040Google Scholar
  11. 11.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Ann. Phys. N.Y.111, 61, 111 (1978)Google Scholar
  12. 12.
    Estrada, R., Garcia-Bondia, J.M., Varilly, J.C.: J. Math. Phys.30, 2789 (1989)Google Scholar
  13. 13.
    Pope, C.N., Romans, L.J., Shen, X.: A new higher-spin algebra and the Lone-Star product. Preprint, CTP TAMU-17/90, USC-90/HEP 01Google Scholar
  14. 14.
    Bakas, I., Kiritsis, E.: Bosonic realisation of a universalW-algebra andZ parafermions. Preprint LBL-28714, UCB-PTH-90/8, UMD-PP 90-160Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. B. Fairlie
    • 1
  • J. Nuyts
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.CERNGeneva 23Switzerland

Personalised recommendations