Communications in Mathematical Physics

, Volume 135, Issue 1, pp 101–140 | Cite as

Semiclassical Yang-Mills theory I: Instantons

  • David Groisser
  • Thomas H. Parker


The partition functions of quantum Yang-Mills theory have an expansion in powers of the coupling constant; the leading order term in this expansion is called the semiclassical approximation. We study the semiclassical approximation for Yang-Mills theory on a compact Riemannian 4-manifold using geometric techniques, and do explicit calculations for the case when the manifold is the 4-sphere. This involves calculating the Riemannian measure and certain functional determinants on the moduli space of self-dual connections. The main result is that the contribution to the semiclassical partition functions coming from thek=1 connections on the 4-sphere isfinite andcalculable. We also discuss a renormalization procedure in which the radius of the 4-sphere is allowed to tend to infinity.


Neural Network Manifold Complex System Partition Function Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHDM] Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Yu.I.: Construction of instantons. Phys. Lett.65A, 185–187 (1978)Google Scholar
  2. [AHS] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A362, 425–461 (1978)Google Scholar
  3. [BP] Belavin, A.A., Polyakov, A.M.: Quantum fluctuations of pseudoparticles. Nucl. Phys. B123, 429–444 (1977)CrossRefGoogle Scholar
  4. [BV] Babelon, O., Viallet, C.M.: The geometrical interpretation of the Faddeev-Popov determinant. Phys. Lett.85B, 246–248 (1979)Google Scholar
  5. [C] Coleman, S.: Aspects of Symmetry, Chap. 5: Secret Symmetry: An introduction to spontaneous symmetry breakdown and gauge fields, and Chap. 7: The Uses of Instantons. Cambridge: Cambridge University 1985Google Scholar
  6. [CVDN] Chadha, S., di Vecchia, P., D'Adda, A., Nicodemi, F.: ζ-function regularization of the quantum fluctuations around the Yang-Mills pseudoparticle. Phys. Lett.72B, 103–108 (1977)Google Scholar
  7. [DMM] Doi, H., Matsumoto, Y., Matumoto, T.: An explicit formula of the metric on the moduli space of BPST-instantons overS 4. A Fete of Topology, pp. 543–556. New York: Academic Press 1988Google Scholar
  8. [FU] Freed, D.S., Uhlenbeck, K.K.: Instantons and Four-Manifolds. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  9. [F] Friedman, A.: Partial differential equations of parabolic type. Englewood Cliffs, NJ: Prentice-Hall 1971Google Scholar
  10. [G] Gilkey, P.: The spectral geometry of a Riemannian manifold. J. Differ. Geom.10, 601–618 (1973)Google Scholar
  11. [GP1] Groisser, D., Parker, T.H.: The Riemannian geometry of the Yang-Mills moduli space. Commun. Math. Phys.112, 663–689 (1987)CrossRefGoogle Scholar
  12. [GP2] Groisser, D., Parker, T.H.: The geometry of the Yang-Mills moduli space for definite manifolds. J. Differ. Geom.29, 499–544 (1989)Google Scholar
  13. [Gr] Groisser, D.: The geometry of the moduli space ofCP 2 instantons. Invent. Math.99, 393–409 (1990)CrossRefGoogle Scholar
  14. [H] 'tHooft, G.: Computation of the quantum efects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432–3450 (1976)CrossRefGoogle Scholar
  15. [L] Lawson, H.B.: The theory of gauge fields in four dimensions. Providence, RI: Am. Math. Soc. 1986Google Scholar
  16. [MSZ] Montgomery, D., Samelson, H., Zippin, L.: Exceptional orbits of highest dimension. Ann. Math.64, 131–141 (1956)Google Scholar
  17. [O] Osborn, H.: Semiclassical functional integrals for self-dual gauge fields. Ann. Phys.135, 373–415 (1981)CrossRefGoogle Scholar
  18. [P] Patodi, V.K.: Curvature and the eigenvalues of the Laplace operator. J. Differ. Geom.5, 233–249 (1971)Google Scholar
  19. [PR] Parker, T.H., Rosenberg, S.: Invariants of conformal Laplacians. J. Differ. Geom.25, 199–222 (1987)Google Scholar
  20. [RaSi] Ray, D.B., Singer, I.M.:R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145–210 (1971)CrossRefGoogle Scholar
  21. [RoSc] Romanov, V.N., Schwarz, A.S.: Anomalies and elliptic operators. Theor. Math. Phys. (English Translation)41, 967–977 (1979)CrossRefGoogle Scholar
  22. [S] Seeley, R.: Complex powers of an elliptic operator. Proc. Symp. Pure Math.10, 288–307 (1973)Google Scholar
  23. [Sc] Schwarz, A.S.: Instantons and fermions in the field of instanton. Commun. Math. Phys.64, 233–268 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • David Groisser
    • 1
  • Thomas H. Parker
    • 2
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations