Communications in Mathematical Physics

, Volume 149, Issue 2, pp 307–333 | Cite as

Special geometry, cubic polynomials and homogeneous quaternionic spaces

  • B. de Wit
  • A. Van Proeyen


The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certainN=2 supergravity theories, where dimensional reduction induces a mapping betweenspecial real, Kähler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the Kähler and quaternionic manifolds in homogeneous holomorphic functions of second degree. We classify all cubic polynomials that have an invariance group that acts transitively on the real manifold. The corresponding Kähler and quaternionic manifolds are then homogeneous. We find that they lead to a well-defined subset of the normal quaternionic spaces classified by Alekseevskiî (and the corresponding special Kähler spaces given by Cecotti), but there is a new class of rank-3 spaces of quaternionic dimension larger than 3. We also point out that some of the rank-4 Alekseevskiî spaces were not fully specified and correspond to a finite variety of inequivalent spaces. A simpler version of the equation that underlies the classification of this paper also emerges in the context ofW3 algebras.


Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Günaydin, M., Sierra, G., Townsend, P.K.: Phys. Lett.B133, 72 (1983); Nucl. Phys.B242, 244 (1984);B253, 573 (1985)CrossRefGoogle Scholar
  2. 2.
    de Wit, B., Van Proeyen, A.: Nucl. Phys.B245, 89 (1984)CrossRefGoogle Scholar
  3. 3.
    Strominger, A.: Commun. Math. Phys.133, 163 (1990); Castellani, L., D'Auria, R., Ferrara, S.: Phys. Lett.B241, 57 (1990); Class. Quantum Grav.7, 1767 (1990); D'Auria, R., Ferrara, S., Fré, P.: Nucl. Phys.B359, 705 (1991)CrossRefGoogle Scholar
  4. 4.
    Seiberg, N.: Nucl. Phys.B303, 286 (1988)CrossRefGoogle Scholar
  5. 5.
    Cecotti, S., Ferrara, S., Girardello, L.: Int. J. Mod. Phys.A4, 2457 (1989)Google Scholar
  6. 6.
    Dixon, L.J., Kaplunovsky, V.S., Louis, J.: Nucl. Phys.B329, 27 (1990)CrossRefGoogle Scholar
  7. 7.
    Ferrara, S., Strominger, A.: In Strings '89, Arnowitt, R., Bryan, R., Duff, M.J., Nanopoulos, D.V., Pope, C.N., (eds) p. 245. Singapore: World Scientific 1989Google Scholar
  8. 8.
    Candelas, P., Green, P., Hübsch, T.: Nucl. Phys.B330, 49 (1990); Candelas, P., de la Ossa, X.C., Green, P., Parkes, L.: Phys. Lett.258B, 118 (1991); Nucl. Phys.B359, 21 (1991); Bodner, M., Cadavid, A.C.: Class. Quantum Grav.7, 829 (1990); Bodner, M., Cadavid, A.C. Ferrara, S.: Class. Quantum Grav.8, 789 (1991)CrossRefGoogle Scholar
  9. 9.
    Ferrara, S., Scherk, J., Zumino, B.: Nucl. Phys.B121, 393 (1977); Cremmer, E., Scherk, J., Ferrara, S.: Phys. Lett.74B, 61 (1978); de Wit, B.: Nucl Phys.B158, 189 (1979); Cremmer, E., Julia, B.: Nucl. Phys.B159, 141 (1979); Gaillard, M.K., Zumino, B.: Nucl. Phys.B193, 221 (1981); de Wit, B., Nicolai, H.: Nucl. Phys.B208, 323 (1982)CrossRefGoogle Scholar
  10. 10.
    de Wit, B., Vanderseypen, F., Van Proeyen, A.: in preparationGoogle Scholar
  11. 11.
    de Wit, B.: preprint CERN-TH.6298/91, to be published In: Strings and Symmetries. Proceedings of the Stony Brook Conference, May 1991Google Scholar
  12. 12.
    Helgason, S.: Differential geometry, Lie groups, and Symmetric Spaces. pp. 259–261 New York: Academic Press 1978Google Scholar
  13. 13.
    Alekseevskiî, D.V.: Math. USSR Izv.9, 297 (1975)Google Scholar
  14. 14.
    Cecotti, S.: Commun. Math. Phys.124, 23 (1989)CrossRefGoogle Scholar
  15. 15.
    Cremmer, E., Kounnas, C., Van Proeyen, A., Derendinger, J.P., Ferrara, S., de Wit, B., Girardello, L.: Nucl. Phys.B250, 385 (1985)CrossRefGoogle Scholar
  16. 16.
    de Wit, B., Van Proeyen, A.: Phys. Lett.B252, 221 (1990)CrossRefGoogle Scholar
  17. 17.
    Zamolodchikov, A.B.: Teor. Mat. Fiz.65, 347 (1985)Google Scholar
  18. 18.
    Fateev, V.A., Zamolodchikov, A.B.: Nucl. Phys.B280, [FS18] 644 (1987); Bais, F., Bouwknegt, P., Surridge, M., Schoutens, K.: Nucl. Phys.B304, 348, 371 (1988); Hull, C.M.: Phys. Lett.240B, 110 (1990); Nucl. Phys.Bd353 707 (1991); Romans, L.J.: Nucl. Phys.B352, 829 (1991)CrossRefGoogle Scholar
  19. 19.
    Atiyah, M.F., Bott, R., Shapiro, A.: Topology3 [Suppl 1] 3 (1964)CrossRefGoogle Scholar
  20. 20.
    Okubo, S.: J. Math. Phys.32, 1657 (1991)CrossRefGoogle Scholar
  21. 21.
    Coquereaux, R.: Phys. Lett.B115, 389 (1982)CrossRefGoogle Scholar
  22. 22.
    Günaydin, M., Sierra, G., Townsend, P.K.: Cass. Quantum Grav.3, 763 (1986)CrossRefGoogle Scholar
  23. 23.
    Cremmer, E., Van Proeyen, A.: Class. Quantum Grav.2, 445 (1985)CrossRefGoogle Scholar
  24. 24.
    Romans, L.J.: Nucl. Phys.B276, 71 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • B. de Wit
    • 1
  • A. Van Proeyen
    • 2
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Instituut voor Theoretische FysicaUniversiteit LeuvenLeuvenBelgium

Personalised recommendations