Skip to main content
Log in

Repression of enzyme formation inHydrogenomonas strain H16G+ by molecular hydrogen and by fructose

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The glucose-utilizing mutantHydrogenomonas strain H16G+ differs from the original strain H16 in having a higher specific activity of glucose-6-phosphate dehydrogenase. During incubation of the original strain or of the mutant H16G+ in a mineral salts/fructose-medium under an atmosphere of 80% H2 + 20% O2, neither growth nor formation of the enzymes of the Entner-Doudoroff system occur. Molecular hydrogen represses the formation of these enzymes even in the presence of carbon dioxide, peptone, or lactate. Under air, the formation of the enzymes of the Entner-Doudoroff pathway is not repressed by lactate nor by acetate, glutamate or pyruvate. In strain H16G+ fructose suppresses the adaptation to glucose; glucose does not repress the formation of a fructose permease. Fructose also suppresses adaptation to and utilization of glutamate and aspartate, but not of lactate. In cells grown either chemolithotrophically or on fructose acetyl-CoA kinase, malate synthase and isocitrate lyase are rapidly formed under air after addition of acetate; the formation of these enzymes is also completely suppressed by molecular hydrogen or fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beisenherz, G., Boltze, H. J., Bücher, Th., Czok, R., Garbade, K. H., Meyer-Arendt, E. undPfeleiderer, G. 1953. Diphosphofructose-Aldolase, phosphoglycerinaldehyd-Dehydrogenase, Milchsäuredehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskel in einem Arbeitsgang. Z. Naturforsch.8b 555–577.

    Google Scholar 

  • Berg, P. 1956. Acyl adenylates: an enzymatic mechanism of acetate activation. J. Biol. Chem.222 991–1013.

    PubMed  Google Scholar 

  • Bergmeyer, H. U. undBernt, E. 1962.d-Glucose. Bestimmung mit Glucose-Oxydase und Peroxydase, S. 123–130.In H. U. Bergmeyer, Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim.

    Google Scholar 

  • Decker, K. 1959. Die aktivierte Essigsäure. F. Enke Verlag, Stuttgart.

    Google Scholar 

  • Dixon, G. H. andKornberg, H. L. 1959. Assay methods for key enzymes of the glyoxylate cycle. Biochem. J.72: 3P.

    Google Scholar 

  • Eisenberg, M. A. 1955. The acetate-activating enzyme ofRhodospirillum rubrum. Biochim. Biophys. Acta16 58–65.

    PubMed  Google Scholar 

  • French, C. S. andMilner, H. W. 1955. Disintegration of bacteria and small particles by high pressure extrusion, p. 64–67.In S. P. Colowick and N. O. Kaplan: Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Gale, E. F. 1943. Factors influencing the enzymic activities of bacteria. Bacteriol. Rev.7 139–173.

    Google Scholar 

  • Gottschalk, G. 1965. Die Verwertung organischer Substrate durchHydrogenomonas in Gegenwart von molekularem Wasserstoff. Biochem. Z.341 260–270.

    PubMed  Google Scholar 

  • Gottschalk, G., Eberhardt, U. undSchlegel, H. G. 1964. Verwertung von Fructose durchHydrogenomonas H 16 (I.). Arch. Mikrobiol.48 95–108.

    PubMed  Google Scholar 

  • Hohorst, H.-J. 1962.l-(+)-Lactat, S. 266–270.In H. U. Bergmeyer, Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim.

    Google Scholar 

  • Hughes, D. E. 1951. A press for disrupting bacteria and other micro-organisms. Brit. J. Exptl. Pathol.32 97–109.

    Google Scholar 

  • Jacob, F. andMonod, J. 1961. Genetic regulatory mechanism in the synthesis of proteins. J. Mol. Biol.3 318–356.

    PubMed  Google Scholar 

  • Jones, M. E. andLipmann, F. 1955. Aceto-CoA-kinase, p. 585–591.In S. P. Colowick and N. O. Kaplan, Methods in Enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Kornberg, H. L. andElsden, S. R. 1961. The metabolism of 2-carbon compounds by microorganisms. Advan. Enzymol.23 401–470.

    Google Scholar 

  • Loomis, W. F., Jr. andMagasanik, B. 1964. The relation of catabolite repression to the induction system forβ-galactosidase inEscherichia coli. J. Mol. Biol.8 417–426.

    Google Scholar 

  • McFadden, B. A. andHowes, W. V. 1962. Isocitrate lyase and malate synthase inHydrogenomonas facilis. J. Biol. Chem.237 1410–1412.

    Google Scholar 

  • Magasanik, B. 1961. Catabolite repression. Cold Spring Harbor Symp. Quant. Biol.26 249–256.

    PubMed  Google Scholar 

  • Magasanik, B. 1964. Enzyme induction and catabolite repression. 6th Intern. Congr. Biochem. Abstr.9 680–681.

    Google Scholar 

  • Nakada, D. andMagasanik, B. 1964. The roles of inducer and catabolite repressor in the synthesis ofβ-galactosidase byEscherichia coli. J. Mol. Biol.8 105–127.

    Google Scholar 

  • Ohmann, E. 1963. Verschiedene Mechanismen der Acetataktivierung in Grünalgen. Naturwiss.50 578.

    Google Scholar 

  • la Rivière, J. W. M. 1958. On the microbial metabolism of the tartaric acid isomers. Thesis, Delft.

  • Rose, I. A. 1955. Acetate kinase of bacteria (acetokinase), p. 591–595.In S. P. Colowick and N. O. Kaplan, Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Schindler, J. 1964. Die Synthese von Poly-β-hydroxybuttersäure durchHydrogenomonas H 16: Die zuβ-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Arch. Mikrobiol.49 236–255.

    PubMed  Google Scholar 

  • Schlegel, H. G. undGottschalk, G. 1965. Verwertung von Glucose durch eine Mutante von Hydrogenomonas H16. Biochem. Z.341 249–259.

    PubMed  Google Scholar 

  • Schlegel, H. G., Gottschalk, G. andvon Bartha, R. 1961. Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas). Nature191 463–465.

    PubMed  Google Scholar 

  • Schlegel, H. G., Kaltwasser, H. undGottschalk, G. 1961. Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol.38 209–222.

    PubMed  Google Scholar 

  • Schmidt, K., Liaaen Jensen, S. undSchlegel, H. G. 1963. Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenii Perty. Arch. Mikrobiol.46 117–126.

    PubMed  Google Scholar 

  • Simon, E. J. andShemin, D. 1953. The preparation of S-succinyl coenzyme A. J. Amer. Chem. Soc.75 2520.

    Google Scholar 

  • Spier, H. W. undPascher, G. 1954. Zur quantitativen Mikro-analyse freier Aminosäuren mittels einer einfachen Cu-Komplexmethode. Z. Physiol. Chemie296 147–154.

    Google Scholar 

  • Stadtman, T. C. 1955. Cholesterol dehydrogenase from aMycobacterium, p. 678–681.In S. P. Colowick and N. O. Kaplan, Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Trüper, H. G. 1965. Tricarboxylic acid cycle and related enzymes inHydrogenomonas strain H16G+ grown on various carbon sources. Biochim. Biophys. Acta.111 565–568.

    PubMed  Google Scholar 

  • Wilde, E. 1962. Untersuchungen über Wachstum und Speicherstoffsynthese vonHydrogenomonas. Arch. Mikrobiol.43 109–137.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, H.G., Trüper, H.G. Repression of enzyme formation inHydrogenomonas strain H16G+ by molecular hydrogen and by fructose. Antonie van Leeuwenhoek 32, 277–292 (1966). https://doi.org/10.1007/BF02097470

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097470

Keywords

Navigation