Advertisement

Communications in Mathematical Physics

, Volume 155, Issue 2, pp 311–324 | Cite as

On the natural line bundle on the moduli space of stable parabolic bundles

  • Hiroshi Konno
Article

Abstract

We construct the natural holomorphic line bundle on the moduli space of stable parabolic bundles on a compact marked Riemann surface, which is the prequantum line bundle for the Chern-Simons gauge theory. The fusion rule in the Chern-Simons gauge theory can be viewed as the existence condition of this line bundle.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: The geometry and physics of knots. Cambridge, New York, Port Chester, Melbourne, Sydney: Cambridge University Press 1990Google Scholar
  2. 2.
    Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four dimensional Riemannian geometry. Proc. Roy. Soc. LondonA 362, 425–461 (1978)Google Scholar
  3. 3.
    Biquard, O.: Fibrés parabolique stables et connexions singulières plates. Bull. Soc. Math. France119, 231–257 (1991)Google Scholar
  4. 4.
    Gocho, T.: The topological invariant of three-manifolds based on theU(1) gauge theory. Master thesis at Univ. of Tokyo (in Japanese) (1990)Google Scholar
  5. 5.
    Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math.79, 121–138 (1957)Google Scholar
  6. 6.
    Gawedzki, K., Kupiainen, A.:SU(2) Chern-Simons theory at genus zero. Commun. Math. Phys.135, 531–546 (1991)Google Scholar
  7. 7.
    Hitchin, N.J.: The self duality equations on a Riemann surface. Proc. London Math. Soc. (3)55, 58–126 (1987)Google Scholar
  8. 8.
    Konno, H.: Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface. To appear in J. Math. Soc. JapanGoogle Scholar
  9. 9.
    Mehta, V., Seshadri, C.S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann.248, 205–239 (1980)Google Scholar
  10. 10.
    Ramadas, T.R., Singer, I.M., Weitsman, J.: Some Comments on Chern-Simons gauge theory. Commun. Math. Phys.126 409–420 (1989)Google Scholar
  11. 11.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representations of braid group. Advanced Stud. Pure Math.19, 297–392 (1989)Google Scholar
  12. 12.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351–399 (1989)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Hiroshi Konno
    • 1
  1. 1.Department of MathematicsTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations