Communications in Mathematical Physics

, Volume 133, Issue 2, pp 369–382 | Cite as

Summability method for a Horn-Shaped region

  • Alexander Moroz
Article

Abstract

A formulation of the Nevanlinna-like theorem for a horn-shaped region is given. Product of functions obeying the hypotheses of the theorem is also shown to obey these hypotheses, i.e. the summability mechanism preserves nonlinear perturbative conditions such as unitarity of the Feynman series.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C] Caianiello, E.R.: Number of Feynman graphs and convergence. Il Nuovo Cim.3, 223–225 (1956)Google Scholar
  2. [F] Fedoriuk, M.V.: Asymptotic estimates: Integrals and series (in Russian). Moscow: Nauka 1987Google Scholar
  3. [Fe] Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Massive Gross-Neveu model: a rigorous perturbative construction. Phys. Rev. Lett.54, 1479–1481 (1985)CrossRefGoogle Scholar
  4. [FK] Fischer, J., Koláî, P.: Differential forms of the dispersion integral. Czech. J. Phys.B37, 297–310 (1987)CrossRefGoogle Scholar
  5. [H] Hardy, G.: Divergent series. Oxford: Oxford University Press 1949Google Scholar
  6. [J] Jevgrafov, M.A.: Asymptotic estimates and entire functions (in Russian). Moscow: Nauka 1979Google Scholar
  7. [K] Kato, T.: Perturbation theory for linear operators, 2nd ed. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  8. [KR] Khuri, N.N., Ren, H.C.: Explicit solutions for the running coupling constant and the separatrix of quantum field theory. Ann. Phys. (NY)189, 142–154 (1989)CrossRefGoogle Scholar
  9. [M1] Moroz, A.: Novel summability method generalizing the Borel method. Czech. J. Phys.B40, 705–726 (1990)CrossRefGoogle Scholar
  10. [M2] Moroz, A.: Strong asymptotic conditions for horn-shaped regions (submitted for publication)Google Scholar
  11. [N] Nevanlinna, F.: Zur Theorie der asymptotischen Potenzreihen. PhD thesis of the Alexander University, Helsingfors 1918Google Scholar
  12. [P] Parisi, G.: Asymptotic estimates in perturbation theory with fermions. Phys. Lett.66B, 382–384 (1977)Google Scholar
  13. [Po] Pordt, A.: Renormalization theory for use of convergent expansions of euclidean quantum field theory. In: t'Hooft, G. et al. (eds.) Nonperturbative quantum field theory. Proceedings, Cargése 1987, pp. 503–511. New York, London: Plenum Press 1988Google Scholar
  14. [R] Ritt, J.F.: On the derivatives of a function at a point. Ann. Math.15, 18–23 (1916)MathSciNetGoogle Scholar
  15. [RS] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV. Analysis of operators. New York, San Francisco, London: Academic Press 1978Google Scholar
  16. [SG] Sansonne, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable, Vol. I. Noordhoff, Groningen, The Netherlands 1960Google Scholar
  17. [S] Simon, B.: Summability methods, the strong asymptotic condition, and unitarity in quantum field theory. Phys. Rev. Lett.28, 1145–1146 (1972)CrossRefGoogle Scholar
  18. [S1] simon, B.: Convergence of regularized, renormalized perturbation series for superrenormalizabel field theories. II Nuovo Cim.59, 199–214 (1969)Google Scholar
  19. [Se] Seiberg, N.: Topology in strong coupling. Phys. Rev. Lett.53, 637–640 (1984)CrossRefGoogle Scholar
  20. [So] Sokal, A.D.: An improvement of Watson's theorem on Borel summability. J. Math. Phys.21, 261–263 (1980)CrossRefGoogle Scholar
  21. [T] Timme, H.-J.: Convergent perturbation expansions in irrelevant interactions for the renormalization group flow of a four-dimensional hierarchicalSU(2) lattice gauge field model. Hamburg preprint DESY 89-110Google Scholar
  22. ['tH1] 'tHooft, G.: Can we make sense out of “quantum chromodynamic”? In: Zichchi, A. (ed.) The whys of subnuclear physics. Proceedings, Erice 1977, pp. 943–971. New York, London: Plenum Press 1979Google Scholar
  23. ['tH2] 'tHooft, G.: Private correspondenceGoogle Scholar
  24. [W] Widder, D.V.: The Laplace transform. Princeton, NJ: Princeton University Press 1946Google Scholar
  25. [Wi] Wightman, A.S.: Should we believe in quantum field theory? In: Zichichi, A. (ed.) The Whys of subnuclear physics. Proceedings, Erice 1977, pp. 983–1015. New York, London: Plenum Press 1979Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Alexander Moroz
    • 1
  1. 1.Institute of Physics ČSAVPrague 8Czechoslovakia

Personalised recommendations