Communications in Mathematical Physics

, Volume 147, Issue 3, pp 549–562 | Cite as

Two-dimensional Lorentz-Weyl anomaly and gravitational Chern-Simons theory

  • A. H. Chamseddine
  • J. Fröhlich


Two-dimensional chiral fermions and bosons, more generally conformal blocks of two-dimensional conformal field theories, exhibit Weyl-, Lorentz- and mixed Lorentz-Weyl anomalies. A novel way of computing these anomalies for a system of chiral bosons of arbitrary conformal spinj is sketched. It is shown that the Lorentz- and mixed Lorentz-Weyl anomalies of these theories can be cancelled by the anomalies of a three-dimensional classical Chern-Simons action for the spin connection, expressed in terms of the dreibein field. Some tentative applications of this result to string theory are indicated.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wen, X.G.: Phys. Rev. B40, 7387 (1989); Phys. Rev. B43, 11025 (1991)Google Scholar
  2. 2.
    Fröhlich, J., Studer, U.M.: Incompressible quantum fluids, gauge invariance and current algebra. To appear in the proceedings of Cargèse School of Physics, 1991. Editors G. 't Hooft et al.Google Scholar
  3. 3.
    Polyakov, A.M.: Mod. Phys. Lett.A2, 899 (1987); Khnizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.A.: Mod. Phys. Lett.A3, 819 (1988)Google Scholar
  4. 4.
    David, F.: Mod. Phys. Lett.A3, 1651 (1988); Distler, J., Kawai, H.: Phys. Lett.B 321, 509 (1989)Google Scholar
  5. 5.
    Chamseddine, A.H.: Phys. Lett.B256, 379 (1991)Google Scholar
  6. 6.
    Alvarez-Gaumé, L., Witten, E.: Nucl. Phys.B234, 269 (1983)Google Scholar
  7. 7.
    Bardeen W.A., Zumino, B.: Nucl. Phys.B244, 421 (1984); Alvarez-Gaumé, L., Ginsparg, P.: Ann. Phys. (N.Y.)161, 423 (1985)Google Scholar
  8. 8.
    Leutwyler, H.: Phys. Lett.153B, 65 (1985)Google Scholar
  9. 9.
    Jackiw, R.: In Current Algebras and Anomalies. Treimann S.B., Jackiw, R., Zumino, B., Witten E.: (eds.) Singapore: World Scientific 1985, and references thereinGoogle Scholar
  10. 10.
    Di Vecchia, P., Durhuus, B., Petersen, J.L.: Phys. Lett.144B, 245 (1989)Google Scholar
  11. 11.
    Alvarez-Gaumé, L., Bost, J.-B., Moore, G., Nelson,P. Vafa, C.: Phys. Lett.B 178, 105 (1986); Gawędzki, K.: In Non-perturbative Quantum Field Theory. p. 101, editors G 't Hooft et al, New York: Plenum Press 1988Google Scholar
  12. 12.
    Dereli, T., Mukherjee, M., Tucker, R.W.: Class. Quant. Grav.5, L 21 (1988)Google Scholar
  13. 13.
    Witten, E.: Nucl. Phys.B.311, 96 (1988);B 323, 113 (1989)Google Scholar
  14. 14.
    Bar-Natan, D., Witten, E.:Commun Math. Phys.141, 423 (1991)Google Scholar
  15. 15.
    Witten, E.: Commun Math. Phys.121, 351 (1989)Google Scholar
  16. 16.
    Mavromatos, N., Miramontes, J.: Mod. Phys. Lett.A4, 1847 (1989)Google Scholar
  17. 17.
    Moore, G., Seiberg, N.: Phys. Lett.220B, 422 (1989); Fröhlich, J.,King, C.: Commun. Math. Phys.126, 167 (1989)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. H. Chamseddine
    • 1
  • J. Fröhlich
    • 2
  1. 1.University of ZürichZürichSwitzerland
  2. 2.ETH-ZürichZürichSwitzerland

Personalised recommendations