Abstract
We study the phase diagram ofS=1 antiferromagnetic chains with particular emphasis on the Haldane phase. The hidden symmetry breaking measured by the string order parameter of den Nijs and Rommelse can be transformed into an explicit breaking of aZ 2×Z 2 symmetry by a nonlocal unitary transformation of the chain. For a particular class of Hamiltonians which includes the usual Heisenberg Hamiltonian, we prove that the usual Néel order parameter is always less than or equal to the string order parameter. We give a general treatment of rigorous perturbation theory for the ground state of quantum spin systems which are small perturbations of diagonal Hamiltonians. We then extend this rigorous perturbation theory to a class of “diagonally dominant” Hamiltonians. Using this theory we prove the existence of the Haldane phase in an open subset of the parameter space of a particular class of Hamiltonians by showing that the string order parameter does not vanish and the hiddenZ 2×Z 2 symmetry is completely broken. While this open subset does not include the usual Heisenberg Hamiltonian, it does include models other than VBS models.
Similar content being viewed by others
References
Albanes, C.: On the spectrum of the Heisenberg Hamiltonian. J. Stat. Phys.55, 297 (1989)
Affleck, I.: Quantum spin chains and the Haldane gap. J. Phys.: Condensed Matter1, 3047 (1989)
Affleck, I., Halperin, B.I.: private communication
Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett.59, 799 (1987); Valence-bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys.115, 477 (1988)
Affleck, I., Lieb, E.H.: A proof of part of Haldane's conjecture on spin chains. Lett. Math. Phys.12, 57 (1986)
Ajiro, Y., Goto, T., Kikuchi, H., Sakakibara, T., Inami, T.: High-field magnetization of a quasi-one-dimensionalS=1 antiferromagnet Ni(C2H8N2)2NO2(ClO4): Observation of the Haldane gap. Phys. Rev. Lett.63, 1424 (1989)
Arovas, D.P., Auerbach, A., Haldane, F.D.M.: Extended Heisenberg models of antiferroagnetism: Analogies to the fractional quantum Hall effect. Phys. Rev. Lett.60, 531 (1988)
Asano, T.: Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Jpn.29, 350 (1970)
Babudjian, H.M.: Exact solutions of the one-dimensional isotropic Heisenberg chain with arbitraryS. Phys. Lett.90A, 479 (1982); Exact solutions of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model. Nucl. Phys.B215, 317 (1983)
Barber, M.N., Batchelor, M.T.: Spectrum of the biquadratic spin-1 antiferromagnetic chain. Phys. Rev.B40, 4621 (1989)
Borgs, C.: Confinement, deconfinement and freezing in lattice Yang Mills theories with continuous time. Commun. Math. Phys.116, 309 (1988)
Botet, R., Julien, R., Kolb, M.: Finite-size scaling study of the spin-1 Heisenberg-Ising chain with uniaxial anisotropy. Phys. Rev.B28, 3914 (1983)
Bratteli, O., Kishimoto, A., Robinson, D.: Ground states of quantum spin systems. Commun. Math. Phys.64, 41 (1978)
Brydges, D.: A short course on cluster expansions. In: Critical Phenomena, Random Systems, Gauge Theories. Osterwalder, K., Stora, R. (eds.), Amsterdam: Elsevier 1986
Buyers, W., Morra, R., Armstrong, R., Hogan, M., Gerlack, P., Hirakawa, K.: Experimental evidence for the Haldane gap in a spin-1, nearly isotropic, antiferromagnetic chain. Phys. Rev. Lett.56, 371 (1986)
den Nijs, M., Rommelse, K.: Preroughning transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev.B40, 4709 (1989)
Fannes, M., Nachtergaele, B., Werner, R.F.: Exact antiferromagnetic ground states of quantum spin chains. Europhys. Lett.10, 633 (1989); Finitely correlated states on quantum spin chains. Commun. Math. Phys.144, 443 (1992)
Ginibre, J.: Existence of phase transitions for quantum lattice system. Commun. Math. Phys.14, 205 (1969)
Girvin, S.M., Arovas, D.: Hidden topological order in integer quantum spin chains. Physica ScriptaT27, 156 (1989)
Glarum, S.H., Geschwind, S., Lee, K.M., Kaplan, M.L., Michel, J.: Observation of fractional spinS=1/2 on open ends ofS=1 linear antiferromagnetic chains: Nonmagnetic doping. Phys. Rev. Lett.67, 1614 (1991)
Hagiwara, M., Katsumata, K., Affleck, I., Halperin, B.I., Renard, J.P.: Observation ofS=1/2 degrees of freedom in anS=1 linear-chain Heisenberg antiferromagnet. Phys. Rev. Lett.65, 3181 (1990)
Haldane, F.D.M.: Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with theO(3) nonlinear sigma model. Phys. Lett.93A, 464 (1983); Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the onedimensional easy-axis Néel state. Phys. Rev. Lett.50, 1153 (1983)
Hatsugai, Y., Kohmoto, M.: Numerical study of hidden antiferromagnetic order in the Haldane phase. Phys. Rev. B44, 11789 (1991)
Katsumata, K., Hori, H., Takeuchi, T., Date, M., Yamagishi, A., Renard, J.P.: Magnetization process of anS=1 linear-chain Heisenberg antiferromagnet. Phys. Rev. Lett.63, 86 (1989)
Kennedy, T.: Exact diagonalization of open spin 1 chains. J. Phys.: Condens. Matter2, 5737–5745 (1990)
Kennedy, T., Tasaki, H.: HiddenZ 2×Z 2 symmetry breaking in Haldane gap antiferromagnets. Phys. Rev. B (to appear)
Kirkwood, J.R., Thomas, L.E.: Expansions and phase transitions for the ground state of quantum Ising lattice systems. Commun. Math. Phys.88, 569 (1983)
Klümper, A.: The spectra ofq state vertex models and related antiferromagnetic quantum spin chains. J. Phys. A.: Math. Gen.23, 809 (1990)
Knabe, S.: Energy gap and elementary excitations for certain VBS quantum antiferromagnets. J. Stat. Phys.52, 627 (1988)
Kolb, M.: Symmetry and boundary condition of planar spin systems. Phys. Rev.B31, 7494 (1985)
Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys.103, 491 (1986)
Kulish, P., Reshtikhin, N. Yu, Sklyanin, E.: Yang-Baxter equation and representation theory. Lett. Math. Phys.5, 393 (1981); Quantum spectral transform method: Recent developments. In: Integrable quantum field theories. Ehlers, J., Hepp, K., Kippenhahn, R., Weidenmüllen, H.A., Zittartz, J. (eds.). Lecture Notes in Physics, Vol. 151, pp. 61. Berlin, Heidelberg, New York: Springer 1982
Lai, J.K.: Lattice gas with nearest neighbor interaction in one dimension with arbitrary statistics. J. Math. Phys.15, 1675 (1974)
Liang, S.: Monte Carlo calculation of the correlation functions for Heisenberg Spin Chains at T=0. Phys. Rev. Lett.64, 1597 (1990)
Lieb, E.H., Mattis, D.: Ordering energy levels in interacting spin chains. J. Math. Phys.3, 749–751 (1962)
Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (NY)16, 407 (1961)
Matsui, T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys.126, 453 (1990)
Matsui, T.: Remarks on the duality of 1 dimensional quantum spin models (preprint)
Nightingale, M.P., Blöte, H.W.J.: Gap of the linear spin-1 Heisenberg antiferromagnet: A Monte Carlo calculation. Phys. Rev.B33, 659 (1986)
Oitmaa, J., Parkinson, J.B., Bonner, J.C.: Crossover effects in a general spin-1-bilinearbiquadratic exchange Hamiltonian. J. Phys. C19, L595 (1986)
Oshikwa, M.: HiddenZ 2×Z 2 symmetry in arbitrary integerS quantum spin chains. J. Phys.: Condens. Matter (to appear)
Perk, J.H.H., Schultz, C.L.: Diagonalization of the transfer matrix of a nonintersecting string model. Physica122A, 50 (1983)
Renard, J.P., Verdaguer, M., Regnault, L.P., Erkelens, W.A.C., Rossat-Mignod, J., Ribas, J., Stirling, W.G., Vettier, C.: Quantum energy gap in two quasi-one-dimensionalS=1 Heisenberg antiferromagnets. J. Appl. Phys.63, 3538 (1988)
Robinson, D.: A new proof of the existence of phase transitions in the anisotropic Heisenberg model. Commun. Math. Phys.14, 195 (1969)
Sakai, T., Takahashi, M.: Energy gap ofS=1 antiferromagnetic Heisenberg chain. Phys. Rev.42, 1090 (1990)
Schorr, A.J.: Antiferromagnetic quantum spin chains with an anisotropic coupling. Princeton University senior thesis, 1987 (unpublished)
Schulz, H.J.: Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum number. Phys. Rev.B34, 6372 (1986)
Schulz, H.J., Ziman, T.: Finite-length calculation of η and phase diagrams of quantum spin chains. Phys. Rev.B33, 6545 (1986)
Singh, R.P.R., Gelfand, M.P.: Order and criticality in spin-1 chains. Phys. Rev. Lett.61, 2133 (1988)
Sólyom, J.: Competing bilinear and biquadratic exchange couplings in spin 1 Heisenberg chains. Phys. Rev.B36, 8642 (1987)
Steiner, M., Kakurai, K., Kjems, J.K., Petitgrand, D., Pynn, R.: Inelastic neutron scattering studies on 1D near-Heisenberg antiferromagnets: A test of the Haldane conjecture. J. Appl. Phys.61, 3953 (1987)
Sutherland, B.: Model for a multi component quantum system. Phys. Rev.B12, 3795 (1975)
Suzuki, M., Fisher, M.E.: Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models. J. Math. Phys.12, 235 (1971)
Takada, S., Kubo, K.: Nonlocal unitary transformation onS=1 antiferromagnetic spin chains. J. Phys. Soc. Jpn.60, 4026 (1991)
Takahashi, M.: Monte Carlo calculation of elementary excitation of spin chains. Phys. Rev. Lett.62, 2313 (1989)
Takhatajan, L.: The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins. Phys. Lett.87A, 479 (1982)
Tasaki, H.: Haldane gap in three dimensions: A rigorous example. Phys. Rev. Lett.64, 2066 (1990)
Tasaki, H.: Quantum liquid in antiferromagnetic chains: A stochastic geometric approach to the Haldane gap. Phys. Rev. Lett.66, 798 (1991)
Tasaki, H.: Haldane gap antiferromagnets in transverse magnetic field. J. Phys.: Condens. Matter3, 5875 (1991)
Tasaki, H.: Haldane gap in quantum spin chains. A geometric approach. (in preparation)
Thomas, L.E., Yin, Z.: Low temperature expansions for the Gibbs states of weakly interacting quantum Ising lattice systems. Commun. Math. Phys.91, 405 (1983); Low temperature expansions for the Gibbs states of quantum Ising lattice systems. J. Math. Phys.25, 3128 (1984)
Uimin, G.V.: One-dimensional problem forS=1 with modified antiferromagnetic Hamiltonian. J.E.T.P. Lett.12, 225 (1970)
Author information
Authors and Affiliations
Additional information
Communicated by M. Aizenman
Rights and permissions
About this article
Cite this article
Kennedy, T., Tasaki, H. Hidden symmetry breaking and the Haldane phase inS=1 quantum spin chains. Commun.Math. Phys. 147, 431–484 (1992). https://doi.org/10.1007/BF02097239
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02097239