Communications in Mathematical Physics

, Volume 158, Issue 1, pp 135–153 | Cite as

Quantum Grassmann manifolds

  • P. Šťovíček


Orbits of the quantum dressing transformation forSU q (N) acting on its solvable dual are introduced. The case is considered when the corresponding classical orbits coincide with Grassmann manifolds. Quantization of the Poisson bracket on a Zariski open subset of the Grassmann manifold yields a *-algebra generated by the quantum coordinate functions. The commutation relations are written in a compact form with the help of theR-matrix. Finite-dimensional irreducible representations ofU h \((\mathfrak{s}\mathfrak{l}(N,\mathbb{C}))\) are derived from the *-algebra structure.


Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drinfeld, V.G.: Quantum groups. In: Proc. ICM Berkeley 1986, Providence, RI: AMS 1987, p. 798Google Scholar
  2. 2.
    Jimbo, M.: Aq-difference analogue ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63 (1985)Google Scholar
  3. 3.
    Rosso, M.: Finite dimensional representations fo the quantum analog of the enveloping algebra of a complex simple Lie algebra. Commun. Math. Phys.117, 581 (1988)Google Scholar
  4. 4.
    Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math.70, 237 (1988)Google Scholar
  5. 5.
    Parshall, B., Wang, J.: Quantum linear groups. Providence, RI: AMS 1991Google Scholar
  6. 6.
    Lakshmibai, V., Reshetikhin, N.: Quantum deformations of flag and Schubert schemes. C.R. Acad. Sci. Paris313, Série I, 121 (1991)Google Scholar
  7. 7.
    Levendorskii, S., Soibelman, Ya.: Algebras of functions on cmpact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys.139, 141 (1991)Google Scholar
  8. 8.
    Semenov-Tian-Shansky, M.A.: Dressing transformations and Poisson Lie group actions. Publ. RIMS, Kyoto University21, 1237 (1985)Google Scholar
  9. 9.
    Babelon, O., Bernard, D.: Dressing transformations and the origin of the quantum group symmetries. Preprint SPhT-91-016 (1991)Google Scholar
  10. 10.
    Lu, J.H., Weinstein, A.: Poisson Lie groups, dressing transformations and Bruhat decompositions. J. Diff. Geom.31, 501 (1990)Google Scholar
  11. 11.
    Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: QuantumR-matrices and factorization problems. J. Geom. Phys.5, 533 (1987)Google Scholar
  12. 12.
    Podles, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381 (1990)Google Scholar
  13. 13.
    Reshetikhin, N.Yu., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i analiz1, 178 (1989) (in Russian)Google Scholar
  14. 14.
    Jurčo, B., Šťovíček, P.: Quantum dressing orbits on compact groups. Commun. Math. Phys.152, 97 (1993)Google Scholar
  15. 15.
    Podles, P.: Quantum spheres. Lett. Math. Phys.14, 193 (1987)Google Scholar
  16. 16.
    Soibelman, Y.: On quantum flag manifolds. RIMS-780 (1991)Google Scholar
  17. 17.
    Taf, E., Towber, J.: Quantum deformation of flag schemes and Grassmann schemes I. Aq-deformation of the shape-algebra forGL(n). J. Algebra142, No. 1 (1991)Google Scholar
  18. 18.
    Šťovíček, P.: Quantum line bundles onS 2 and the method of orbits forSU q(2). J. Math. Phys.34, 1606 (1993)Google Scholar
  19. 19.
    Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys.111, 613 (1987)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • P. Šťovíček
    • 1
  1. 1.Department of MathematicsFaculty of Nuclear Science, CTUPragueCzech Republic

Personalised recommendations