Skip to main content
Log in

Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. The main result is to prove universality of the structure of very large atoms and molecules, i.e., proving that the structure converges as the nuclear charges go to infinity. Furthermore we uniquely characterize the limit density as the solution to a renormalized TFW-equation. This is achieved by characterizing the strong singularities of solutions to the non-linear TFW-system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benguria, R., Brezis, H., Lieb, E.H.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys.79, 167–180 (1981)

    Article  Google Scholar 

  2. Benguria, R., Lieb, E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B18, 1045–1059 (1985)

    Google Scholar 

  3. Brezis, H., Lieb, E.H.: Long range potentials in Thomas-Fermi theory. Commun. Math. Phys.65, 231–246 (1979)

    Article  Google Scholar 

  4. Dreizler, R.M.: Private communication

  5. Gagliardo, E.: Ulteriori propieta di alcune classi di funzioni in piu variabili. Ric. Mat.8, 24–51 (1959)

    Google Scholar 

  6. Hoffmann-Ostenhof, T.: A comparison theorem for differential inequalities with applications in quantum mechanics. J. Phys. A13, 417–424 (1980)

    Google Scholar 

  7. Hughes, W.: An atomic energy lower bound that gives Scott's correction. PhD thesis, Princeton, Department of Mathematics, 1986

    Google Scholar 

  8. Liberman, D.A., Lieb, E.H.: Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion. Los Alamos National Laboratory Report, LA 9186-MS, 1981

  9. Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A29, 3018–3028 (1984)

    Article  Google Scholar 

  10. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–640 (1981)

    Article  Google Scholar 

  11. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules, and solids. Adv. Math.23, 22–116 (1977)

    Article  Google Scholar 

  12. Nirenberg, L.: On elliptic partial differential equations. Ann. Scu. Norm. Sup. Pisa13, 115–162 (1959)

    Google Scholar 

  13. Rother, W.: Zur Thomas-Fermi-von Weizsäcker Theorie für Atome und Moleküle. Bayreuther Mathematische Schriften18, 39–145 (1985)

    Google Scholar 

  14. Seco, L.A., Sigal, I.M., Solovej, J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. (to appear)

  15. Siedentop, H., Weikard, R.: On the leading correction of the Thomas-Fermi model: Lower bound — with an appendix by A.M.K. Müller. Invent. Math.97, 159–193 (1989)

    Article  Google Scholar 

  16. Siedentop, H., Weikard, R.: On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys.112, 471–490 (1987)

    Article  Google Scholar 

  17. Solovej, J.P.: Universality in the Thomas-Fermi-von Weizsäcker Theory of Atoms and Molecules. PhD thesis, Princeton, Department of Mathematics, June 1989

    Google Scholar 

  18. Sommerfeld, A.: Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z. Phys.78, 283–308 (1932)

    Article  Google Scholar 

  19. Stich, W., Gross, E.K.U., Malzacher, P., Dreizler, R.M.: Accurate solution of the Thomas-Fermi-Dirac-Weizsäcker variational equations for the case of neutral atoms and positive ions. Z. Phys. A309, 5–11 (1982)

    Article  Google Scholar 

  20. Veron, L.: Singular solutions of some nonlinear elliptic equations. Nonlinear Analysis5, 225–242 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Supported by a Danish Research Academy Fellowship and U.S. National Science Foundation grant PHY-85-15288-A03

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solovej, J.P. Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules. Commun.Math. Phys. 129, 561–598 (1990). https://doi.org/10.1007/BF02097106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097106

Keywords

Navigation