Abstract
We study the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. The main result is to prove universality of the structure of very large atoms and molecules, i.e., proving that the structure converges as the nuclear charges go to infinity. Furthermore we uniquely characterize the limit density as the solution to a renormalized TFW-equation. This is achieved by characterizing the strong singularities of solutions to the non-linear TFW-system.
Similar content being viewed by others
References
Benguria, R., Brezis, H., Lieb, E.H.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys.79, 167–180 (1981)
Benguria, R., Lieb, E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B18, 1045–1059 (1985)
Brezis, H., Lieb, E.H.: Long range potentials in Thomas-Fermi theory. Commun. Math. Phys.65, 231–246 (1979)
Dreizler, R.M.: Private communication
Gagliardo, E.: Ulteriori propieta di alcune classi di funzioni in piu variabili. Ric. Mat.8, 24–51 (1959)
Hoffmann-Ostenhof, T.: A comparison theorem for differential inequalities with applications in quantum mechanics. J. Phys. A13, 417–424 (1980)
Hughes, W.: An atomic energy lower bound that gives Scott's correction. PhD thesis, Princeton, Department of Mathematics, 1986
Liberman, D.A., Lieb, E.H.: Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion. Los Alamos National Laboratory Report, LA 9186-MS, 1981
Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A29, 3018–3028 (1984)
Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–640 (1981)
Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules, and solids. Adv. Math.23, 22–116 (1977)
Nirenberg, L.: On elliptic partial differential equations. Ann. Scu. Norm. Sup. Pisa13, 115–162 (1959)
Rother, W.: Zur Thomas-Fermi-von Weizsäcker Theorie für Atome und Moleküle. Bayreuther Mathematische Schriften18, 39–145 (1985)
Seco, L.A., Sigal, I.M., Solovej, J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. (to appear)
Siedentop, H., Weikard, R.: On the leading correction of the Thomas-Fermi model: Lower bound — with an appendix by A.M.K. Müller. Invent. Math.97, 159–193 (1989)
Siedentop, H., Weikard, R.: On the leading energy correction for the statistical model of the atom: interacting case. Commun. Math. Phys.112, 471–490 (1987)
Solovej, J.P.: Universality in the Thomas-Fermi-von Weizsäcker Theory of Atoms and Molecules. PhD thesis, Princeton, Department of Mathematics, June 1989
Sommerfeld, A.: Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z. Phys.78, 283–308 (1932)
Stich, W., Gross, E.K.U., Malzacher, P., Dreizler, R.M.: Accurate solution of the Thomas-Fermi-Dirac-Weizsäcker variational equations for the case of neutral atoms and positive ions. Z. Phys. A309, 5–11 (1982)
Veron, L.: Singular solutions of some nonlinear elliptic equations. Nonlinear Analysis5, 225–242 (1981)
Author information
Authors and Affiliations
Additional information
Communicated by B. Simon
Supported by a Danish Research Academy Fellowship and U.S. National Science Foundation grant PHY-85-15288-A03
Rights and permissions
About this article
Cite this article
Solovej, J.P. Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules. Commun.Math. Phys. 129, 561–598 (1990). https://doi.org/10.1007/BF02097106
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02097106