Communications in Mathematical Physics

, Volume 129, Issue 3, pp 511–523 | Cite as

On the phase structure of the compact abelian lattice Higgs model

  • João C. A. Barata
Article
  • 58 Downloads

Abstract

This paper studies the vacuum overlap order parameter proposed by Fredenhagen and Marcu in the case of the compactU(1) gauge model with the Wilson action coupled to a Higgs field with fixed length |ϕ|=1. The existence of two distinct phases inD space-time dimensions (D≥4) is established.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Phase Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fredenhagen, K., Marcu, M.: Charged states in ℤ2 gauge theories. Commun. Math. Phys.92, 81–119 (1983)CrossRefGoogle Scholar
  2. 2.
    Fredenhagen, K.: Particle structure of gauge theories. Proceedings of the Summer School, “Fundamental Problems of Gauge Field Theory”, Erice 1985Google Scholar
  3. 3.
    Fredenhagen, K., Marcu, M.: A confinement criterium for QCD with dynamical quarks. Phys. Rev. Lett.56, 223 (1986)CrossRefGoogle Scholar
  4. 4.
    Filk, T., Fredenhagen, K., Marcu, M., Slachanyi, K.: Charged states and order parameters in the Georgi-Glashow model. Desy Preprint 89-002 (1989)Google Scholar
  5. 5.
    Kondo, K.: Order parameter for charge confinement and phase structures in the latticeU(1) Gauge-Higgs model. Prog. Theor. Phys.74, 152–169 (1985)Google Scholar
  6. 6.
    Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D19, 3682 (1979)CrossRefGoogle Scholar
  7. 7.
    Borgs, C., Nill, F.: The phase structure of the abelian lattice Higgs model. A review of rigorous results. J. Stat. Phys.47, 877 (1987)CrossRefGoogle Scholar
  8. 8.
    King, C.: Deconfining phase transition in theU(1) model with Wilson's action. Commun. Math. Phys.105, 675–690 (1986)CrossRefGoogle Scholar
  9. 9.
    Guth, A.: Existence proof of a non-confining phase in four dimensionalU(1) Lattice theory. Phys. Rev. D21, 2291–2307 (1980)CrossRefGoogle Scholar
  10. 10.
    Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, vol. 159 Berlin, Heidelberg, New York: Springer 1982Google Scholar
  11. 11.
    Brydges, D.C.: A short course on cluster expansions. Les Houches lecture notes (1984)Google Scholar
  12. 12.
    Slachanyi, K.: Non-local fields in theZ(2) Higgs model. the global symmetry breaking and the confinement problem. Commun. Math. Phys.108, 319–352 (1987)Google Scholar
  13. 13.
    Ginibre, J.: General formulation of Griffths' inequalities. Commun. Math. Phys.16, 310 (1970)CrossRefGoogle Scholar
  14. 14.
    Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys.110, 440–471 (1978)Google Scholar
  15. 15.
    Barata, J.C.A., Wreszinski, W.F.: Absence of charged states in theU(1) Higgs lattice Gauge theory. Commun. Math. Phys.103, 637 (1986)CrossRefGoogle Scholar
  16. 16.
    Jersák, J.: Lattice Higgs models in lattice Gauge theory — a chalenge in large-scale computing. Wuppertal, 1985Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • João C. A. Barata
    • 1
  1. 1.Instituto de Física da Universidade de São PauloSão PauloBrasil

Personalised recommendations