Combustion, Explosion and Shock Waves

, Volume 32, Issue 2, pp 191–203 | Cite as

Interaction of a shock wave with a cloud of particles

  • V. M. Boiko
  • V. P. Kiselev
  • S. P. Kiselev
  • A. N. Papyrin
  • S. V. Poplavskii
  • V. M. Fomin


The present paper is devoted to experimental and theoretical investigation of shock-wave propagation in a mixture of a gas and solid particles with clearly defined boundaries of the two-phase region (cloud of particles). The effect of qualitative transformation of supersonic flow behind a shock wave in a cloud of particles is shown experimentally and substantiated theoretically for volume concentrations of the dispersed phase of 0.1–3%.


Physical Chemistry Dynamical System Shock Wave Disperse Phase Solid Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Ivandaev, A. G. Kutushev, and R. I. Nigmatulin, “Gas dynamics of multiphase media. Shock and detonation waves in gas suspensions,”Itogi Nauk. Tekh., Ser. Mekh. Zhidk. Gaza,16, 209–287 (1981).Google Scholar
  2. 2.
    S. L. Soo,Fluid Dynamics of Multiphase Systems [Russian translation], Mir, Moscow (1971).Google Scholar
  3. 3.
    A. B. Bailey and J. Hiatt, “Sphere drag coefficients for a broad range of Mach and Reynolds numbers,”AIAA J.,10, No. 11, 1436–1440 (1972).Google Scholar
  4. 4.
    A. B. Bailey and R. F. Starr, “Sphere drag at transonic speeds and high Reynolds numbers,”AIAA J.,14, No. 11, 1631–1632 (1976).Google Scholar
  5. 5.
    G. Rudinger, “Effective drag coefficient for gas-particle flow in shock tubes,”Trans. ASME,920, 165–172 (1970).Google Scholar
  6. 6.
    D. J. Carlson and R. F. Hoglund, “Particle drag and heat transfer in rocket nozzles,”AIAA J.,2, No. 11, 1980–1984 (1970).Google Scholar
  7. 7.
    B. P. Selberg and J. A. Nicholls, “Drag coefficient of small spherical particles,”AIAA J.,6, No. 3, 401–408 (1968).Google Scholar
  8. 8.
    C. B. Henderson, “Drag coefficient of spheres in continuum and rarefied flows,”AIAA J.,14, No. 6, 707–708 (1976).Google Scholar
  9. 9.
    Z. P. Gorbis,Heat Exchange of Dispersed Flows [in Russian], Energiya, Moscow (1964).Google Scholar
  10. 10.
    N. N. Yanenko, R. I. Soloukhin, A. N. Papyrin, and V. M. Fomin,Supersonic Two-Phase Flows under Conditions of Particle Velocity Nonequilibrium [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  11. 11.
    A. I. Ivandaev and A. G. Kutushev, “Numerical modeling of unsteady wave flows of gas suspensions with separation of boundaries of two-phase regions and contact discontinuities in the carrier gas,”Numerical Methods of Continuum Mechanics,14, No. 6 (1983), pp. 58–82.Google Scholar
  12. 12.
    R. I. Nigmatulin,Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987), Part 1.Google Scholar
  13. 13.
    É. A. Khoruzhnikov, “Unsteady wave processes in aerosols,”Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 49–54 (1987).Google Scholar
  14. 14.
    K. C. Lapworth, “Normal shock wave tables for air, ... and oxygen,” ARS Current Papers, No. 1101 (1970).Google Scholar
  15. 15.
    A. A. Vasil'ev,Shock-Wave Parameters in Gases [in Russian], Novosib. Univ., Novosibirsk (1990), Part 1.Google Scholar
  16. 16.
    V. M. Boiko, A. V. Fedorov, V. M. Fomin, et al., “Ignition of small particles behind shock waves,” in:Shock Waves, Explosions, and Detonations. Progr. Astron-Aeron.,87, 71–83 (1983).Google Scholar
  17. 17.
    S. P. Kiselev, G. A. Ruev, A. P. Trunev, et al.,Shock-Wave Processes in Two-Component and Two-Phase Media [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  18. 18.
    S. P. Kiselev and V. M. Fomin, “Continuum-discrete model for a mixture of a gas and solid particles at low volume concentration of the particles,”Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 93–101 (1986),Google Scholar
  19. 19.
    V. P. Kiselev, S. P. Kiselev, and V. M. Fomin, “Interaction of a shock wave with a cloud of finite-size particles,”Prikl. Mekh. Tekh. Fiz., No. 4, 26–37 (1994).Google Scholar
  20. 20.
    V. V. Rusanov, “Third-order difference scheme for the through calculation of discontinuous solutions,”Dokl. Akad. Nauk SSSR,180, No. 6, 1303–1305 (1968).Google Scholar
  21. 21.
    N. P. Gridnev, S. S. Katsnel'son, and V. P. Fomichev,Nonuniform MHD Flows with a T-Layer [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  22. 22.
    Yu. A. Berezin and M. P. Fedoruk,Modeling of Unsteady Processes in Plasma [in Russian], Nauka, Novosibirsk (1993).Google Scholar
  23. 23.
    C. T. Crowe, “Numerical models for dilute gas-particle flows (review),” Transl. J.Trans. ASME, J. Eng. Mater. Tech.,104, No. 3, 114–122 (1982).Google Scholar
  24. 24.
    V. I. Blagosklonov, V. M. Kuznetsov, A. N. Minailos, et al., “Interaction of hypersonic non-monophase flows,”Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 59–67 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. M. Boiko
    • 1
  • V. P. Kiselev
    • 1
  • S. P. Kiselev
    • 1
  • A. N. Papyrin
    • 1
  • S. V. Poplavskii
    • 1
  • V. M. Fomin
    • 1
  1. 1.Institute of Theoretical and Applied Mechanics, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations