Skip to main content
Log in

Use of ordination and other multivariate descriptive methods to study succession

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

Multivariate techniques can be applied to both the static approach to succession (determining trends from data collected at one time) and the dynamic approach (observing actual change following perturbation). Such applications, which are few in number, are reviewed; and two studies are described in more detail: a numerical analysis of Australian rain-forest succession by Williams et al. (1969b), and a study of lawn succession as influenced by shading and trampling effects, by the author. Complex data embodying threefold relationships (sites × times × species) are shown to be amenable to multivariate analyses, and to representation of successional change by trajectories in an ordination field. Multivariate approaches have advantage over classificatory approaches for the description and understanding of interactions between spatial pattern, and change through time. Problems of experimental design and modelling for such studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. F. H. & J. F. Koonce. 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology. 54(6): 1234–1246.

    Google Scholar 

  • Austin, M. P. 1968. Pattern in a Zerna erecta dominated community. J. Ecol. 56: 197–218.

    Google Scholar 

  • Austin, M. P. 1971. Role of regression analysis in plant ecology. Proc. Ecol. Soc. Aust. 6: 63–75.

    Google Scholar 

  • Austin, M. P. 1972. Models and analysis of descriptive vegetation data. In: Mathematical Models in Ecology (ed. J. Jeffers). Brit. Ecol. Soc. Symp. 12: 61–86. Blackwell, London.

    Google Scholar 

  • Austin, M. P. 1976a. On non-linear species response models in ordination. Vegetatio 33: 33–41.

    Article  Google Scholar 

  • Austin, M. P. 1976b. Performance of four ordination techniques assuming three different non-linear species response models. Vegetatio 33: 43–49.

    Article  Google Scholar 

  • Austin, M. P. & I. Noy-Meir. 1971. The problem of non-linearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.

    Google Scholar 

  • Birks, H. J. B. 1974. Numerical zonations of Flandarian pollen data. New Phytol. 73: 351–358.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Clifford, H. T. & W. Stephenson. 1975. An Introduction to Numerical Classification. Academic Press, New York, 229 pp.

    Google Scholar 

  • Connell, J. H. & R. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organisation. Amer. Nat. 111 (in press).

  • Curtis, J. T. & R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.

    Google Scholar 

  • Dale, M. B. 1975. On objectives of methods of ordination. Vegetatio 30: 15–32.

    Google Scholar 

  • Dale, M. B., P. MacNaughton-Smith, W. T. Williams & G. N. Lance. 1970. Numerical classification of sequences. Aust. Comput. J. 2: 9–13.

    Google Scholar 

  • Dale, M. B. & D. A. Walker. 1970. Information analysis of pollen diagrams I. Pollen Spores 12: 21–37.

    Google Scholar 

  • Goff, P. G. 1968. Use of size statification and differential weighting to measure forest trends. Amer. Midl. Nat. 79: 402–418.

    Google Scholar 

  • Goff, P. G. & P. H. Zedler. 1968. Structural gradient analysis of upland forest in the Western Great Lakes Area. Ecol. Monogr. 38: 65–86.

    Google Scholar 

  • Goff, P. G. & P. H. Zedler. 1972. Derivation of species succession vectors. Amer. Midl. Nat. 87: 397–412.

    Google Scholar 

  • Gordon, A. D. 1974. Numerical methods in Quaternary paleoecology III. Sequential sampling strategies. New Phytol. 73: 781.

    Google Scholar 

  • Gordon, A. D. & H. J. B. Birks. 1972. Numerical methods in Quaternary palaeoecology I. Zonation of pollen diagram. New Phytol. 71: 961–79.

    Google Scholar 

  • Gordon, A. D. & H. J. B. Birks. 1974. Numerical methods in Quaternary paleoecology II. Comparison of pollen diagrams. New Phytol. 73: 221–249.

    Google Scholar 

  • Greig-Smith, P. 1964. Quantitative Plant Ecology (2nd ed.). Butterworths, London. 256 pp.

    Google Scholar 

  • Greig-Smith, P. 1969. Analysis of vegetation data: the user viewpoint. In: Statistical Ecology III. Many species populations, ecosystems and system analysis. (eds. G. P. Patil, E. C. Pielou & W. E. Waters), pp. 149–162. Penn. State Univ. Press, London.

    Google Scholar 

  • Habeck, J. R. 1968. Forest succession in the Glacier Park cedar-hemlock forests. Ecology 49: 872–880.

    Google Scholar 

  • Hopkins, D. 1968. Vegetation of the Olokemeji Forest Reserve. Nigeria. J. Ecol. 56: 97–115.

    Google Scholar 

  • Horn, H. S. 1975. Markovian properties of forest succession. In: Ecology and Evolution of Communities, (eds. M. L. Cody & J. M. Diamond), pp. 196–211. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Itow, S. 1963. Grassland vegetation in uplands of Western Honshu, Japan. II. Succession and grazing indicators. Jap. J. Bot. 18(2): 133–167.

    Google Scholar 

  • Knapp, R. (ed.). 1974. Handbook of Vegetation Science. Chapter 8. Vegetation Dynamics. Junk, The Hague. 364 pp.

    Google Scholar 

  • Maarel, E. van der. 1969. On the use of ordination models in phytosociology. Vegetatio 19: 21–46.

    Google Scholar 

  • McIntosh, R. P. 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.

    Google Scholar 

  • Major, J. 1974. Differences in duration of successional seres. In: Vegetation Dynamics (R. Knapp, ed.). Handb. Veget. Sci. 8: 133–139. Junk, The Hague.

    Google Scholar 

  • Norris, J. M. & M. B. Dale. 1971. Transition matrix approach to numerical classification of soil profiles. Proc. Soil Sci. Soc. Am. 35: 487.

    Google Scholar 

  • Noy-Meir, I. 1974. Catenation: quantitative methods for the definition of coenoclines. Vegetatio 29: 89–99.

    Google Scholar 

  • Noy-Meir, I. & D. J. Anderson. 1971. Multiple pattern analysis or multiscale ordination: pathway to a vegetation hologram. In: Statistical Ecology III. Many Species Populations, Ecosystems and Systems Analysis (eds. G. P. Patil, E. C. Pielou & W. E. Waters), pp. 207–232. Pennsylvania State Univ. Press. London.

    Google Scholar 

  • Noy-Meir, I. & R. H. Whittaker, 1977a. Continuous multivariate methods in community analysis: some problems and developments. Vegetatio 33: 79–98.

    Article  Google Scholar 

  • Noy-Meir, I. & R. H. Whittaker. 1977b. Recent development in continuous multivariate techniques. In: Ordination of Plant Communities (ed. R. H. Whittaker). Junk, The Hague (in press).

    Google Scholar 

  • Orlóci, L. 1966. Geometric models in ecology. I. The theory and application of some ordination methods. J. Ecol. 54: 193–215.

    Google Scholar 

  • Orlóci, L. 1967. An agglomerative method for classification of plant communities. J. Ecol. 55: 193–206.

    Google Scholar 

  • Orlóci, L. 1975. Multivariate Analysis in Vegetation Research. Junk, The Hague. 276 pp.

    Google Scholar 

  • Pennington, W. & M. J. Sackin. 1975. An application of principal components analysis to the zonation of two Late Devonian profiles. New Phytol. 75: 419–453.

    Google Scholar 

  • Rabotnov, T. A. 1974. Differences between fluctuations and successions. In: Vegetation Dynamics (ed. R. Knapp). Handb. Veget. Sci. 8: 19–24. Junk, The Hague.

    Google Scholar 

  • Rochow, J. J. 1972. A vegetational description of a Mid-Missouri forest using gradient analysis techniques. Amer. Midl. Nat. 88: 377–396.

    Google Scholar 

  • Shugart, H., D. Crow & J. Hett. 1973. Forest succession models, rationale and methodology for modelling forest succession over large regions. Forest Sci. 19: 203–212.

    Google Scholar 

  • Spenceley, A. P. 1973. The effect of the stratification of vegetation on the analysis of successional data. J. Ecol. 61: 767–774.

    Google Scholar 

  • Walker, D. A. 1971. Quantification in historical plant ecology. Proc. Ecol. Soc. Aust. 6: 91–104.

    Google Scholar 

  • Watt, A. S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Google Scholar 

  • Webb, L. J., J. C. Tracey & W. T. Williams. 1972. Regeneration and pattern in sub-tropical rain forest. J. Ecol. 60: 675–696.

    Google Scholar 

  • Webb, L. J., J. C. Tracey, W. T. Williams & Lance. 1971. Prediction of agricultural potential from intact forest vegetation. J. Appl. Ecol. 3: 99–121.

    Google Scholar 

  • Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 49: 201–264.

    Google Scholar 

  • Whittaker, R. H. (ed.). 1973. Handbook of Vegetation Science, Part V. Ordination and Classification of Communities. Junk, The Hague. 737 pp.

    Google Scholar 

  • Whittaker, R. H. 1975. Communities and Ecosystems. (2nd ed.). Macmillan, New York. 385 pp.

    Google Scholar 

  • Whittaker, R. H. & H. G. Gauch. 1973. Evaluation of ordination techniques. In: Ordination and Classification of Communities (ed. R. H. Whittaker). Handb. Veget. Sci. 5: 289–321. Junk, The Hague.

    Google Scholar 

  • Williams, W. T. (ed.). 1976. Pattern Analysis in Agricultural Science. CSIRO, Melbourne. 331 pp.

    Google Scholar 

  • Williams, W. T., M. B. Dale & G. N. Lance. 1971. Two outstanding ordination problems. Aust. J. Bot. 19: 251–258.

    Google Scholar 

  • Williams, W. T. & J. M. Lambert. 1960. Multivariate methods in plant ecology. II. The use of an electronic digital computer for association analysis. J. Ecol. 48: 689–710.

    Google Scholar 

  • Williams, W. T. & G. N. Lance. 1968a. Choice of strategy in the analysis of complex data. Statistician 18: 31–44.

    Google Scholar 

  • Williams, W. T. & G. N. Lance. 1968b. Application of computer classification techniques to problems in land survey. Bull. Inst. Int. Statist. 42: 345–355.

    Google Scholar 

  • Williams, W. T., G. N. Lance, L. J. Webb & J. G. Tracey. 1973. Studies in the numerical analysis of complex rain-forest communities. VI. Models for the classification of quantitative data. J. Ecol.: 61: 47–70.

    Google Scholar 

  • Williams, W. T., G. N. Lance, L. J. Webb, J. G. Tracey & J. H. Connell. 1969a. Studies in the numerical analysis of complex rainforest communities. IV. A method for the elucidation of smallscale forest pattern. J. Ecol. 57: 635–654.

    Google Scholar 

  • Williams, W. T. G. N. Lance, L. J. Webb, J. G. Tracey & M. B. Dale. 1969b. Studies in the numerical analysis of complex rainforest communities. III. The analysis of successional data. J. Ecol. 57: 515–536.

    Google Scholar 

  • Williams, W. T. & W. Stephenson. 1973. The analysis of three-dimensional data (sites × species × times) in marine ecology. J. Exp. Mar. Biol. Ecol. 11: 207–227.

    Article  Google Scholar 

  • Zedler, P. H. & F. G. Goff. 1973. Size-association analysis of forest successional trends in Wisconsin. Ecol. Monogr. 43: 79–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I should like to thank B. Chabot, D. Cohen, H. Gauch, C. Mohler, T. Wentworth, R. H. Whittaker and the referees for helpful comments on the paper and S. Conley for assisting in preparing it. The paper was prepared while visiting the Section of Ecology and Systematics at Cornell University and I thank S. A. Levin for making the facilities available.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, M.P. Use of ordination and other multivariate descriptive methods to study succession. Plant Ecol 35, 165–175 (1977). https://doi.org/10.1007/BF02097067

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097067

Keywords

Navigation