Abstract
Using a link between Einstein-Sasakian structures and Killing spinors we prove a general construction principle of odd-dimensional Riemannian manifolds with real Killing spinors. In dimensionn=7 we classify all compact Riemannian manifolds with two or three Killing spinors. Finally we classify nonflat 7-dimensional Riemannian manifolds with parallel spinor fields.
Similar content being viewed by others
References
Atiyah, M.F., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A326, 425–461 (1978)
Baum, H.: Odd-dimensional Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom.7, 2 (1989)
Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom. (to appear)
Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne. Lecture Notes in Mathematics, Vol. 194. Berlin, Heidelberg, New York: Springer 1971
Blair, D.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Berlin, Heidelberg, New York: Springer 1976
Duff, M.J., Nilsson, B., Pope, C.N.: Kaluza-Klein supergravity. Phys. Rep.130, 1–142 (1986)
Fischer, A.E., Wolf, J.A.: The structure of compact Ricci-flat Riemannian manifolds. J. Diff. Geom.10, 277–288 (1975)
Friedrich, Th.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr.97, 117–146 (1980)
Friedrich, Th.: A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds. Math. Nachr.102, 53–56 (1981)
Friedrich, Th.: Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten. Colloq. Math.44, 277–290 (1981)
Friedrich, Th., Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Global Anal. Geom.3, 265–273 (1985)
Friedrich, Th., Kath, I.: Einstein manifolds of dimension five with small eigenvalue of the Dirac operator, J. Diff. Geom.29, 263–279 (1989)
Friedrich, Th., Kath, I.: Compact 5-dimensional Riemannian manifolds with parallel spinors, Math. Nachr. (to appear)
Friedrich, Th., Kath, I.: Variétés Riemanniennes compactes de dimension 7 admettant des spineurs de Killing. C.R. Acad. Sci. Paris Ser. I. t.307, 967–969 (1988)
Friedrich, Th., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Math. Nachr.106, 271–299 (1982)
Friedrich, Th. (Ed.): Self-dual Riemannian geometry and instantons. Leipzig: Teubner 1981
Futaki, A.: Kähler-Einstein metrics and integral invariants. Lecture Notes in Mathematics, Vol. 1314. Berlin, Heidelberg, New York: Springer 1988
Hijazi, O.: Caractérisation de la sphère par les premières valeurs propres de l'opérateur de Dirac en dimension 3, 4, 7 et 8. C.R. Acad. Sci. Paris, Ser. I303, 417–419 (1986)
Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys.104, 151–162 (1986)
Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Diff. Geom.9, 435–441 (1974)
Hitchin, N.: Kählerian twistor spaces. Proc. Lond. Math. Soc.43, 133–150 (1981)
Husemoller, D.: Fibre bundles. New York: 1966
Ishihara, S., Konishi, M.: Differential geometry of fibred spaces. Kyoto: 1973
Kirchberg, K.D.: Compact six-dimensional Kähler spin manifolds of positive scalar curvature with the smallest positive first eigenvalue of the Dirac operator. Math. Ann.282, 157–176 (1988)
Kobayashi, S.: On compact Kähler manifolds with positive definite Ricci tensor. Ann. Math.74, 570–574 (1961)
Kobayashi, S.: Topology of positively pinched Kähler geometry. Tohoku Math. J.15, 121–139 (1963)
Koiso, N., Sakane, Y.: Non-homogeneous Kähler-Einstein metrics on compact complex manifolds. Preprint
Kostant, B.: Quantization and unitary representations. Lecture Notes in Mathematics, Vol. 170, pp. 87–207. Berlin, Heidelberg, New York: Springer 1970
Kreck, M., Stolz, St.: A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds withSU(3)×SU(2)×U(1)-symmetry. Ann. Math.127, 373–388 (1988)
Lichnerowicz, A.: Spin manifolds, Killing spinors, and universality of the Hijazi inequality. Lett. Math. Phys.13, 331–344 (1987)
Lichnerowicz, A.: Les spineurs-twisteurs sur une varieté spinorielle compacte. C.R. Acad. Sci. Paris, Ser. I306, 381–385 (1988)
Nieuwenhuizen, P. van, Warner, N.P.: Integrability conditions for Killing spinors. Commun. Math. Phys.93, 277–284 (1984)
Postnikov, M.M.: Lectures on Geometry V, Lie groups and algebras. Moscow: 1982 (Russ.)
Salamon, S.: Topics in four-dimensional Riemannian geometry. In: Geometry Seminar “Luigi Bianchi”. Lecture Notes in Mathematics, Vol. 1022. Berlin, Heidelberg, New York: Springer 1983
Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds withc 1(M)>0. Invent. Math.89, 225–246 (1987)
Tian, G., Yau, S.-T.: Kähler-Einstein metrics on complex surfaces withc 1>0. Commun. Math. Phys.112, 175–203 (1987)
Séminaire Palaiseau, Géométrie des surfacesK3: modules et périodes. Asterisque126 (1985)
Author information
Authors and Affiliations
Additional information
Communicated by L. Alvarez-Gaumé
Rights and permissions
About this article
Cite this article
Friedrich, T., Kath, I. 7-Dimensional compact Riemannian manifolds with Killing spinors. Commun.Math. Phys. 133, 543–561 (1990). https://doi.org/10.1007/BF02097009
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02097009