Skip to main content
Log in

7-Dimensional compact Riemannian manifolds with Killing spinors

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using a link between Einstein-Sasakian structures and Killing spinors we prove a general construction principle of odd-dimensional Riemannian manifolds with real Killing spinors. In dimensionn=7 we classify all compact Riemannian manifolds with two or three Killing spinors. Finally we classify nonflat 7-dimensional Riemannian manifolds with parallel spinor fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A326, 425–461 (1978)

    Google Scholar 

  2. Baum, H.: Odd-dimensional Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom.7, 2 (1989)

    Google Scholar 

  3. Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom. (to appear)

  4. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne. Lecture Notes in Mathematics, Vol. 194. Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  5. Blair, D.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  6. Duff, M.J., Nilsson, B., Pope, C.N.: Kaluza-Klein supergravity. Phys. Rep.130, 1–142 (1986)

    Article  Google Scholar 

  7. Fischer, A.E., Wolf, J.A.: The structure of compact Ricci-flat Riemannian manifolds. J. Diff. Geom.10, 277–288 (1975)

    Google Scholar 

  8. Friedrich, Th.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr.97, 117–146 (1980)

    Google Scholar 

  9. Friedrich, Th.: A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds. Math. Nachr.102, 53–56 (1981)

    Google Scholar 

  10. Friedrich, Th.: Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten. Colloq. Math.44, 277–290 (1981)

    Google Scholar 

  11. Friedrich, Th., Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Global Anal. Geom.3, 265–273 (1985)

    Article  Google Scholar 

  12. Friedrich, Th., Kath, I.: Einstein manifolds of dimension five with small eigenvalue of the Dirac operator, J. Diff. Geom.29, 263–279 (1989)

    Google Scholar 

  13. Friedrich, Th., Kath, I.: Compact 5-dimensional Riemannian manifolds with parallel spinors, Math. Nachr. (to appear)

  14. Friedrich, Th., Kath, I.: Variétés Riemanniennes compactes de dimension 7 admettant des spineurs de Killing. C.R. Acad. Sci. Paris Ser. I. t.307, 967–969 (1988)

    Google Scholar 

  15. Friedrich, Th., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Math. Nachr.106, 271–299 (1982)

    Google Scholar 

  16. Friedrich, Th. (Ed.): Self-dual Riemannian geometry and instantons. Leipzig: Teubner 1981

    Google Scholar 

  17. Futaki, A.: Kähler-Einstein metrics and integral invariants. Lecture Notes in Mathematics, Vol. 1314. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  18. Hijazi, O.: Caractérisation de la sphère par les premières valeurs propres de l'opérateur de Dirac en dimension 3, 4, 7 et 8. C.R. Acad. Sci. Paris, Ser. I303, 417–419 (1986)

    Google Scholar 

  19. Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys.104, 151–162 (1986)

    Article  Google Scholar 

  20. Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Diff. Geom.9, 435–441 (1974)

    Google Scholar 

  21. Hitchin, N.: Kählerian twistor spaces. Proc. Lond. Math. Soc.43, 133–150 (1981)

    Google Scholar 

  22. Husemoller, D.: Fibre bundles. New York: 1966

  23. Ishihara, S., Konishi, M.: Differential geometry of fibred spaces. Kyoto: 1973

  24. Kirchberg, K.D.: Compact six-dimensional Kähler spin manifolds of positive scalar curvature with the smallest positive first eigenvalue of the Dirac operator. Math. Ann.282, 157–176 (1988)

    Article  Google Scholar 

  25. Kobayashi, S.: On compact Kähler manifolds with positive definite Ricci tensor. Ann. Math.74, 570–574 (1961)

    Google Scholar 

  26. Kobayashi, S.: Topology of positively pinched Kähler geometry. Tohoku Math. J.15, 121–139 (1963)

    Google Scholar 

  27. Koiso, N., Sakane, Y.: Non-homogeneous Kähler-Einstein metrics on compact complex manifolds. Preprint

  28. Kostant, B.: Quantization and unitary representations. Lecture Notes in Mathematics, Vol. 170, pp. 87–207. Berlin, Heidelberg, New York: Springer 1970

    Google Scholar 

  29. Kreck, M., Stolz, St.: A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds withSU(3)×SU(2)×U(1)-symmetry. Ann. Math.127, 373–388 (1988)

    Google Scholar 

  30. Lichnerowicz, A.: Spin manifolds, Killing spinors, and universality of the Hijazi inequality. Lett. Math. Phys.13, 331–344 (1987)

    Article  Google Scholar 

  31. Lichnerowicz, A.: Les spineurs-twisteurs sur une varieté spinorielle compacte. C.R. Acad. Sci. Paris, Ser. I306, 381–385 (1988)

    Google Scholar 

  32. Nieuwenhuizen, P. van, Warner, N.P.: Integrability conditions for Killing spinors. Commun. Math. Phys.93, 277–284 (1984)

    Article  Google Scholar 

  33. Postnikov, M.M.: Lectures on Geometry V, Lie groups and algebras. Moscow: 1982 (Russ.)

  34. Salamon, S.: Topics in four-dimensional Riemannian geometry. In: Geometry Seminar “Luigi Bianchi”. Lecture Notes in Mathematics, Vol. 1022. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  35. Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds withc 1(M)>0. Invent. Math.89, 225–246 (1987)

    Article  Google Scholar 

  36. Tian, G., Yau, S.-T.: Kähler-Einstein metrics on complex surfaces withc 1>0. Commun. Math. Phys.112, 175–203 (1987)

    Article  Google Scholar 

  37. Séminaire Palaiseau, Géométrie des surfacesK3: modules et périodes. Asterisque126 (1985)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Alvarez-Gaumé

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, T., Kath, I. 7-Dimensional compact Riemannian manifolds with Killing spinors. Commun.Math. Phys. 133, 543–561 (1990). https://doi.org/10.1007/BF02097009

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097009

Keywords

Navigation