Communications in Mathematical Physics

, Volume 154, Issue 2, pp 421–432 | Cite as

Correlation functions in the Itzykson-Zuber model

  • Samson L. Shatashvili
Article

Abstract

Then-point function for the integral over unitary matrices with Itzykson-Zuber measure is reduced to the integral over the Gelfand-Tzetlin table; the integrand (for genericn) is given by linear exponential times the rational function. Forn=2 and in some cases forn>2 later in fast is the polynomial and this allows to give an explicit and simple expression for all 2-point and a set ofn-point functions. For the most generaln-point function a simple linear differential equation is constructed.

Keywords

Differential Equation Neural Network Statistical Physic Correlation Function Complex System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harish-Chandra: Am. J. Math.79, 87 (1957)Google Scholar
  2. 2.
    Itzykson, K., Zuber, J.B.: J. Math. Phys.21, 411 (1980)Google Scholar
  3. 3.
    Alekseev, A., Faddeev, L., Shatashvili, S.: J. Geom. and Phys.3, 391 (1989)Google Scholar
  4. 4.
    Gelfand, I.M., Naimark, M.A.: Trudi MIAN36, 1 (1950)Google Scholar
  5. 5.
    Kazakov, V., Migdal, A.: Induced QCD at LargeN. Paris, Princeton preprint LPTENS-92/15/PUPT-1322, May 1992Google Scholar
  6. 6.
    Douglas, M: unpublishedGoogle Scholar
  7. 7.
    Kogan, I., Morozow, A., Semenoff, G.W., Weiss, N.: Area law and continuum limit in induced QCD. UBC preprint UBCTP-92-022, July 1992Google Scholar
  8. 8.
    Migdal, A.: Mixed model of induced QCD. Paris preprint LPTENS-92/23, August 1992Google Scholar
  9. 9.
    Morozov, A.: ITEP preprint to appearGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Samson L. Shatashvili
    • 1
  1. 1.Institute for Advanced StudySchool of Natural SciencesPrincetonUSA

Personalised recommendations