Advertisement

Communications in Mathematical Physics

, Volume 136, Issue 1, pp 35–41 | Cite as

Exponential decay of Green's functions for a class of long range Hamiltonians

  • Wei-Min Wang
Article
  • 63 Downloads

Abstract

We consider a class of long range Hamiltonians with diagonal disorder onl2 (Z). For anyergodic potentialV with non-empty essential range, we prove the exponential decay of the Green's functions for energies in the essential range. IfV is independent identically distributed, we obtain the exponential decay of the Green's functions for all coupling constant λ>0. Moreover the Hamiltonian has only pure point spectrum.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Long Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  2. 2.
    Delyon, F., Kunz, H., Souillard, B.: One dimensional wave equations in disordered media. J. Phys. A16, 25 (1983)Google Scholar
  3. 3.
    Delyon, F., Lévy, Y., Souillard, B.: Anderson localization for one and quasi-one dimensional systems. J. Stat. Phys.41, 375–388 (1985)CrossRefGoogle Scholar
  4. 4.
    Delyon, F., Lévy, Y., Souillard, B.: Anderson localization for multidimensional systems at large disorder or large energy. Commun. Math. Phys.100, 463 (1985)CrossRefGoogle Scholar
  5. 5.
    Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat.31, 457–469 (1960)Google Scholar
  6. 6.
    Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys.84, 403–438 (1982)CrossRefGoogle Scholar
  7. 7.
    Katznelson, Y.: An introduction to Harmonic analysis. New York: Dover 1976Google Scholar
  8. 8.
    Kotani, S.: Lyapunov indices determine absolutely continuous spectra of stationary random one dimensional Schrödinger operators. Proc. Kyoto Stoch. Conf. 225–248 (1982)Google Scholar
  9. 9.
    Kotani, S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys.1, 129–133 (1989)CrossRefGoogle Scholar
  10. 10.
    Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys.78, 201 (1980)CrossRefGoogle Scholar
  11. 11.
    Ruelle, D.: Erogdic theory of differentiable dynamical systems. IHES50, 275 (1979)Google Scholar
  12. 12.
    Simon, B.: Kotani theory for one-dimensional stochastic Jacobi matrices. Commun. Math. Phys.89, 227 (1983)CrossRefGoogle Scholar
  13. 13.
    Simon, B., Spencer, T.: Trace class perturbations and the absence of absolutely continuous spectra. Commun. Math. Phys.125, 113 (1989)CrossRefGoogle Scholar
  14. 14.
    Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure. Appl. Math39, 75–90 (1986)Google Scholar
  15. 15.
    Spencer, T.: The Schrödinger equation with a random potential — a mathematical review. Critical Phenomena, Random Systems, Gauge Theories, Les Houches XLIII. Osterwalder, K., Stora, R. (eds.)Google Scholar
  16. 16.
    Thouless, D. J.: A relation between the density of states and range of localization for one dimensional random systems. J. Phys. C5, 77–81 (1972)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Wei-Min Wang
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations