Advertisement

Communications in Mathematical Physics

, Volume 151, Issue 1, pp 89–153 | Cite as

Diagonalization of theXXZ Hamiltonian by vertex operators

  • Brian Davies
  • Omar Foda
  • Michio Jimbo
  • Tetsuji Miwa
  • Atsushi Nakayashiki
Article

Abstract

We diagonalize the anti-ferroelectricXXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(2))\). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit—thesu(2)-invariant Thirring model.

Keywords

Neural Network Complex System Nonlinear Dynamics Recent Result Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frenkel, I.B., Reshetikhin, N.Yu.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys.146, 1–60 (1992)Google Scholar
  2. 2.
    Kang, S.-J., Kashiwara, M., Misra, K., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. Int. J. Mod. Phys. A.7, Suppl. 1A, 449–484 (1992)Google Scholar
  3. 3.
    Foda, O., Miwa, T.: Corner transfer matrices and quantum affine algebras. ibid. 279–302Google Scholar
  4. 4.
    Date, E., Jimbo, M., Okado, M.: Crystal base andq vertex operators. Osaka Univ. Math. Sci. preprint,1 (1991) Commun. Math. Phys., to appearGoogle Scholar
  5. 5.
    Smirnov, F.A.: Dynamical symmetries of massive integrable models. Int. J. Mod. Phys. A7, Suppl. 1B, 813–837, 839–858 (1992)Google Scholar
  6. 6.
    Bernard, D., LeClair, A.: Quantum Group Symmetries and Non-Local Currents in 2D QFT. Commun. Math. Phys.142, 99–138 (1991)Google Scholar
  7. 7.
    Felder, G., LeClair, A.: Restricted Quantum Affine Symmetry of Restricted Minimal Conformal Models. Int. J. Mod. Phys. A7, Suppl. 1A, 239–278 (1992)Google Scholar
  8. 8.
    Eßler, F.H.L., Korepin, V.E., Schoutens, K.: Fine structure of the Bethe Ansatz for the spin-1/2 HeisenbergXXX model. preprint (1992)Google Scholar
  9. 9.
    Destri, C., Lowenstein, J.H.: Analysis of the Bethe-Ansatz equations of the chiral-invariant Gross-Neveu model. Nucl. Phys. B205 [FS5], 369–385 (1982)Google Scholar
  10. 10.
    Babelon, O., de Vega, H.J., Viallet, C.M.: Analysis of the Bethe Ansatz equations of theXXZ model. Nucl. Phys. B220 [FS8], 13–34 (1983)Google Scholar
  11. 11.
    Faddeev, L., Takhatajan, L.A.: Spectrum and scattering of excitations in the one-dimensional Heisenberg model. J. Soviet Math.24, 241–267 (1984)Google Scholar
  12. 12.
    Pasquier, V., Saleur, H.: Common structures between finite size systems and conformal field theories through quantum groups. Nucl. Phys. B330, 523–556 (1990)Google Scholar
  13. 13.
    Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press 1982Google Scholar
  14. 14.
    Wu T.-T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev. B13, 316–374 (1976)Google Scholar
  15. 15.
    Sato, M., Miwa, T., Jimbo, M.: Holonomic quantum fields I–V. Publ. RIMS,14–17 223–267 (1978); 201–278, 577–629, 871–972 (1979); 531–584 (1980)Google Scholar
  16. 16.
    Smirnov, F.A.: Form factors in completely integrable models of quantum field theory. Advanced Series in Mathematical Physics vol.14. Singapore: World Scientific 1992Google Scholar
  17. 17.
    Belavin, A.A., Polyako, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys.B241, 333–380 (1984)Google Scholar
  18. 18.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representations of braid group. Advanced Studies in Pure Mathematics, vol.16, Tokyo: Kinokuniya 1988Google Scholar
  19. 19.
    Zamolodchikov, A.B.: Integrable field theory from conformal field theory. Advanced Studies in Pure Mathematics vol.19. Tokyo: Kinokuniya 1989Google Scholar
  20. 20.
    Feigin, B., Frenkel, E.: Free field resolutions in affine Toda field theories. Phys. Lett.B276, 79–86 (1992)Google Scholar
  21. 21.
    Corrigan, E., Dorey, P.: A representation of the exchange relation for affine Toda field theory. Phys. Lett.,B273, 237–245 (1991)Google Scholar
  22. 22.
    Baxter, R.J.: Corner transfer matrices of the eight vertex model. Low-temperature expansions and conjectured properties. J. Stat. Phys.15, 485–503 (1976)Google Scholar
  23. 23.
    Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: One dimensional configuration sums in vertex models and affine Lie algebra characters. Lett. Math. Phys.17, 69–77 (1989)Google Scholar
  24. 24.
    Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models: Local height probabilities and theta function identities. Nucl. Phys. B290. [FS20], 231–273 (1987)Google Scholar
  25. 25.
    Kashiwara, M.: On crystal bases of theq-analogue of universal enveloping algebras. Duke Math. J.63, 465–516 (1991)Google Scholar
  26. 26.
    Kashiwara, M.: Global crystal bases of quantum groups. RIMS preprint,756 (1991)Google Scholar
  27. 27.
    Baxter, R.J.: Spontaneous staggered polarization of theF model. J. Stat. Phys.9, 145–182 (1973)Google Scholar
  28. 28.
    Tetel'man, M.G.: Lorentz group for two-dimensional integrable lattice systems. Zh. Eksp. Teor. Fiz.82, 528–535 (1982)Google Scholar
  29. 29.
    Misra, K.lC., Miwa, T.: Crystal base for the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\). Commun. Math. Phys.134, 79–88 (1990)Google Scholar
  30. 30.
    Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of representations of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\) atq=0. Commun. Math. Phys.136, 543–566 (1991)Google Scholar
  31. 31.
    Frahm, H., Thacker, H.B.: Corner transfer matrix eigenstates for the six vertex model. J. Phys. A: Math. Gen.24, 5587–5603 (1991)Google Scholar
  32. 32.
    Birkhoff, G.D.: The generalized Riemann problem for linear differential equations and the allied problems for linear difference andq-difference equations. Proc. Am. Acad. Arts and Sci.49, 521–568 (1914)Google Scholar
  33. 33.
    Aomoto, K.: A note on holonomicq-difference systems, Algebraic Analysis, vol. I, Eds. Kashiwara, M., Kawai, T., pp. 25–28. San Diego: Academic Press 1988Google Scholar
  34. 34.
    Lusztig, G.: EquivariantK-theory and representations of Hecke algebras. Proc. Am. Math. Soc.94, 337–342 (1985)Google Scholar
  35. 35.
    James, G.D., Kerber, A.: The representation theory of the symmetric group. Reading, MA: Addison-Wesley 1981Google Scholar
  36. 36.
    Kirillov, A.N., Smirnov, F.A.: Form factors in theSU (2)-invariant Thirring model. J. Soviet Math.47, 2423–2450 (1989)Google Scholar
  37. 37.
    des Cloiseau, Gaudin, M.: Anisotropic linear magnetic chain. J. Math. Phys.7, 1384–1400 (1966)Google Scholar
  38. 38.
    Whittaker, E.T., Watson, G.N.: Modern Analysis. 4th ed., London: Cambridge University Press 1962Google Scholar
  39. 39.
    Reshetikhin, N.Yu.:S-matrices, in integrable models of isotropic magnetic chains: I. J. Phys. A: Math. Gen.24, 3299–3309 (1991)Google Scholar
  40. 40.
    Kashiwara, M., Miwa, T.: A class of elliptic solutions to the star-triangle relation. Nucl. Phys. B275 [FS17], 121–134 (1986)Google Scholar
  41. 41.
    Hasegawa, K., Yamada, Y.: Algebraic derivation of the brokenZ N symmetric model. Phys. Lett.146A, 387–396 (1990)Google Scholar
  42. 42.
    Au-Yang, H., McCoy, B.M., Perk, J.H.H., Tang, S., Yan, M.-L.: Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus, >1. Phys. Lett.123A, 219–223 (1987)Google Scholar
  43. 43.
    Baxter, R.J., Perk, J.H.H., Au-Yang, H.: New solutions of the star-triangle relations for the chiral Potts model. Phys. Lett.128A, 138–142 (1988)Google Scholar
  44. 44.
    Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. of A.M.S.4, 365–421 (1991)Google Scholar

Note added in proof. The subject of the present article is developed further in the following papers

  1. 45A.
    Jimbo, M., Miki, K., Miwa T., Nakayashiki, A.: Correlation functions of theXXZ model for Δ<−1. RIMS preprint 877 (1992), to appear in Phys. Lett. A.Google Scholar
  2. 46A.
    Idzumi, M., Iohara, K., Jimbo, M., Miwa, T., Nakashima, T., Tokihiro., T.: Quantum affine symmetry in vertex models. RIMS preprint 892 (1992)Google Scholar
  3. 47A.
    Jimbo, M., Miwa, T., Ohta, Y.: Structure of the space of states in RSOS models. RIMS preprint 893 (1992)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Brian Davies
    • 1
    • 3
  • Omar Foda
    • 2
  • Michio Jimbo
    • 4
  • Tetsuji Miwa
    • 5
  • Atsushi Nakayashiki
    • 6
  1. 1.Mathematics Department, the FacultiesThe Australian National UniversityCanberraAustralia
  2. 2.Institute for Theoretical PhysicsUniversity of NijmegenNijmegenThe Netherlands
  3. 3.Department of MathematicsUniversity of MelbourneParkvilleAustralia
  4. 4.Department of Mathematics, Faculty of ScienceKyoto UniversityKyotoJapan
  5. 5.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  6. 6.The Graduate School of Science and TechnologyKobe UniversityKobeJapan

Personalised recommendations