Skip to main content
Log in

The full diagonal model of a Bose gas

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is the final one in a series in which we investigate some models of an interacting Bose gas using Varadhan's large deviation version of Laplacian asymptotics; in it we study the equilibrium thermodynamics of the full diagonal model of a Bose gas. We obtain a formula expressing the pressure, in the thermodynamic limit, as the supremum of a functional over the space of positive bounded measures. We analyse this formula for a large class of interaction kernels and show that there is a critical temperature below which there is Bose-Einstein condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, T.D., Yang, C.N.: The many-body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev.105, 1119–1120 (1957)

    Article  Google Scholar 

  2. Huang, K., Yang, C.N., Luttinger, J.M.: Imperfect Bose gas with hard-sphere interactions. Phys. Rev.105, 776–784 (1957)

    Article  Google Scholar 

  3. Thouless, D.J.: The quantum mechanics of many-body systems. New York: Academic Press 1961

    Google Scholar 

  4. Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys.10, 1115–1122 (1969)

    Article  Google Scholar 

  5. Dorlas, T.C., Lewis, J.T., Pulé, J.V.: The Yang-Yang thermodynamic formalism and large deviations. Commun. Math. Phys.124, 365–402 (1984).

    Article  Google Scholar 

  6. Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schrödinger model. To appear in Commun. Math. Phys. (1993)

  7. Davies, E.B.: The thermodynamic limit for an imperfect boson gas. Commun. Math. Phys.28, 69–86 (1972)

    Google Scholar 

  8. van den Berg, M., Lewis, J. T., de Smedt, Ph.: Condensation in the imperfect boson gas. J. Stat. Phys.37, 697–707 (1984)

    Article  Google Scholar 

  9. Lewis, J.T., Pulé, J.V., Zagrebnov, V.A.: The large deviation principle for the Kac distribution. Helv. Phys. Acta.61, 1063–1078 (1988)

    Google Scholar 

  10. van den Berg, M., Dorlas, T.C., Lewis, J.T., Pulé, J.V.: A perturbed meanfield model of an interacting boson gas and the large deviation principle. Commun. Math. Phys.127, 41–69 (1990)

    Article  Google Scholar 

  11. van den Berg, M., Lewis, J.T., Pulé, J.V.: The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys.118, 61–85 (1988)

    Article  Google Scholar 

  12. van den Berg, M., Dorlas, T. C., Lewis, J.T., Pulé, J.V.: The pressure in the Huang-Yang-Luttinger model of an interacting boson gas. Commun. Math. Phys.128, 231–245 (1990)

    Article  Google Scholar 

  13. Dorlas, T.C., Lewis, J.T., Pulé, J.V.: Condensation in some perturbed meanfield models of a Bose gas. Helv. Phys. Acta64, 1200–1224 (1991)

    Google Scholar 

  14. Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math.19, 261–286 (1966)

    Google Scholar 

  15. Girardeau, M.: Relationship between systems of inpenetrable bosons and fermions in one dimension. J. Math. Phys.1, 516–523 (1960)

    Article  Google Scholar 

  16. van den Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose-Einstein condensation. Helv. Phys. Acta.59, 1271–1288 (1986)

    Google Scholar 

  17. Bourbaki, N., Éléments de mathématiques, chap IX: Intégration. Paris: Hermann 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Föhlich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorlas, T.C., Lewis, J.T. & Pulé, J.V. The full diagonal model of a Bose gas. Commun.Math. Phys. 156, 37–65 (1993). https://doi.org/10.1007/BF02096732

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096732

Keywords

Navigation