Advertisement

Communications in Mathematical Physics

, Volume 156, Issue 1, pp 37–65 | Cite as

The full diagonal model of a Bose gas

  • T. C. Dorlas
  • J. T. Lewis
  • J. V. Pulé
Article

Abstract

This paper is the final one in a series in which we investigate some models of an interacting Bose gas using Varadhan's large deviation version of Laplacian asymptotics; in it we study the equilibrium thermodynamics of the full diagonal model of a Bose gas. We obtain a formula expressing the pressure, in the thermodynamic limit, as the supremum of a functional over the space of positive bounded measures. We analyse this formula for a large class of interaction kernels and show that there is a critical temperature below which there is Bose-Einstein condensation.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Critical Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, T.D., Yang, C.N.: The many-body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev.105, 1119–1120 (1957)CrossRefGoogle Scholar
  2. 2.
    Huang, K., Yang, C.N., Luttinger, J.M.: Imperfect Bose gas with hard-sphere interactions. Phys. Rev.105, 776–784 (1957)CrossRefGoogle Scholar
  3. 3.
    Thouless, D.J.: The quantum mechanics of many-body systems. New York: Academic Press 1961Google Scholar
  4. 4.
    Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys.10, 1115–1122 (1969)CrossRefGoogle Scholar
  5. 5.
    Dorlas, T.C., Lewis, J.T., Pulé, J.V.: The Yang-Yang thermodynamic formalism and large deviations. Commun. Math. Phys.124, 365–402 (1984).CrossRefGoogle Scholar
  6. 6.
    Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schrödinger model. To appear in Commun. Math. Phys. (1993)Google Scholar
  7. 7.
    Davies, E.B.: The thermodynamic limit for an imperfect boson gas. Commun. Math. Phys.28, 69–86 (1972)Google Scholar
  8. 8.
    van den Berg, M., Lewis, J. T., de Smedt, Ph.: Condensation in the imperfect boson gas. J. Stat. Phys.37, 697–707 (1984)CrossRefGoogle Scholar
  9. 9.
    Lewis, J.T., Pulé, J.V., Zagrebnov, V.A.: The large deviation principle for the Kac distribution. Helv. Phys. Acta.61, 1063–1078 (1988)Google Scholar
  10. 10.
    van den Berg, M., Dorlas, T.C., Lewis, J.T., Pulé, J.V.: A perturbed meanfield model of an interacting boson gas and the large deviation principle. Commun. Math. Phys.127, 41–69 (1990)CrossRefGoogle Scholar
  11. 11.
    van den Berg, M., Lewis, J.T., Pulé, J.V.: The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys.118, 61–85 (1988)CrossRefGoogle Scholar
  12. 12.
    van den Berg, M., Dorlas, T. C., Lewis, J.T., Pulé, J.V.: The pressure in the Huang-Yang-Luttinger model of an interacting boson gas. Commun. Math. Phys.128, 231–245 (1990)CrossRefGoogle Scholar
  13. 13.
    Dorlas, T.C., Lewis, J.T., Pulé, J.V.: Condensation in some perturbed meanfield models of a Bose gas. Helv. Phys. Acta64, 1200–1224 (1991)Google Scholar
  14. 14.
    Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math.19, 261–286 (1966)Google Scholar
  15. 15.
    Girardeau, M.: Relationship between systems of inpenetrable bosons and fermions in one dimension. J. Math. Phys.1, 516–523 (1960)CrossRefGoogle Scholar
  16. 16.
    van den Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose-Einstein condensation. Helv. Phys. Acta.59, 1271–1288 (1986)Google Scholar
  17. 17.
    Bourbaki, N., Éléments de mathématiques, chap IX: Intégration. Paris: Hermann 1969Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • T. C. Dorlas
    • 1
  • J. T. Lewis
    • 2
  • J. V. Pulé
    • 3
  1. 1.Department of MathematicsUniversity College of SwanseaSwanseaWales, U.K.
  2. 2.School of Theoretical PhysicsDublin Institute of Advanced StudiesDublinIreland
  3. 3.Department of Mathematical PhysicsUniversity CollegeBelfieldIreland

Personalised recommendations