Advertisement

Reaction Kinetics and Catalysis Letters

, Volume 46, Issue 1, pp 115–121 | Cite as

Chemisorptive characterization of Mn2+ cation effects on fused iron-catalysts

  • Yanfei Shen
  • Kaihuei Huang
Article

Abstract

Volumetric and pulse chemisorptions of carbon monoxide (CO) have been developed to characterize effects of Mn2+ cations on an industrial doubly promoted fused iron catalyst. Addition of Mn2+ cations induces an increase in Fe dispersity, Fe electronic density and stability of the Mn2+-containing iron catalyst, where the same increase is observed by XPS and SEM. These effects explain why the activity of Mn2+-containing iron catalysts is improved.

Keywords

Iron Physical Chemistry Catalysis Carbon Monoxide Chemisorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abstract

Волюмометрическую и импульсную хемосорбцию моноокиси углерода использовали для характеристики эффектов катионов Mn2+ на промышленных сплавленных железных катализаторах, дважды нанесенных. Добавка Mn2+ повышает дисперсность Fe, электронную плотность Fe и стабильность железных катализаторов, в то время как одинаковые повышения наблюдаются в XPS и SEM. Объясняют наблюдаемые результаты. Активность катализатора с Mn2+ улучшена.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    Y.L. Xiong, J.-T. Li, L.-F. Cai, K.H. Huang: Abstr. 3rd National Symp. Catal., Shanghai, China, 1986, E-8.Google Scholar
  2. 1.(b)
    K.H. Huang: Appl. Catal.,15, 175 (1985).Google Scholar
  3. 2.
    W.H. Wiser: Energy Res. Abstr.,10, (22), No. 46247 (1985).Google Scholar
  4. 3.
    W.H. Wiser: ibid.Energy Res. Abstr., 10 (23) No. 48317 (1985).Google Scholar
  5. 4.
    W.H. Wiser: ibid.Energy Res. Abstr., 10 (23) No. 48318 (1985).Google Scholar
  6. 5.
    J. Venter, M. Kaminsky, G.L. Geoffroy, M.A. Vannice: J. Catal.,103, 470 (1987).Google Scholar
  7. 6.
    J. Venter, M. Kaminsky, G.L. Geoffroy, M.A. Vannice: J. Catal.,105, 155 (1987).Google Scholar
  8. 7.
    H.J. Krebs, H.P. Bonzel, W. Scharting, G. Gafner: J. Catal.,72, 199 (1981).Google Scholar
  9. 8.
    N.K. Jaggi, L.H. Schwartz, J.B. Butt, H. Papp, M. Baerns: Appl. Catal.,13, 387 (1985).Google Scholar
  10. 9.
    G.C. Maiti, R. Malessa, U. Lochner, H. Papp, M. Baerns: Appl. Catal.,16, 215 (1985).Google Scholar
  11. 10.
    J. Barrault: Stud. Surf. Sci. Catal.,11, 225 (1982).Google Scholar
  12. 11.
    K.R. Chen: Diss. Abstr. Int. B.,47, 3084 (1987).Google Scholar
  13. 12.
    Stanislaw Ledakowiez: Chem. Inz. Chem.,19, 81 (1986).Google Scholar
  14. 13.
    V.L. Kuznetsov, H.F. Danilyuk, I.E. Kolosova, Y.I. Yermakov: React. Kinet. Catal. Lett.,21, 249 (1982).Google Scholar
  15. 14.
    K.H. Huang: in “Proc. 7th Intl. Congr. Catal.” p. 554, Tokyo 1980.Google Scholar
  16. 15.
    E. Rorris: Ph.D. dissertation, Northwestern University, USA, 1983.Google Scholar
  17. 16.
    W.M. Sachtler: in “Proc. 8th Intl. Congr. Catal.” Vol. 1, p. 151, Berlin 1984.Google Scholar
  18. 17.
    G. Blyholder: J. Phys. Chem.,68, 2772 (1964).Google Scholar
  19. 18.
    H. Kolbel, K.D. Tillenetz: U.S. 4,177,203; 1979.Google Scholar
  20. 19.
    H. Kolbel, K.D. Tillenetz: Ger. Offen. 2,507,647; 1976.Google Scholar
  21. 20.
    B. Bussemeier, C.D. Frohning, G. Horn, W. Klug: Ger. Offen., 2,518,964; 1976.Google Scholar
  22. 21.
    B. Bussemeier, C.D. Frohning, B. Cornils: Hydrocarbon Processings,11, 105 (1976).Google Scholar
  23. 22.
    Y.L. Xiong, J.T. Li, L.F. Cai, K.H. Huang: submitted to Chinese J. Catal.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • Yanfei Shen
    • 1
  • Kaihuei Huang
    • 1
  1. 1.Department of Chemistry and Institute of Physical ChemistryXiamen UniversityXiamenChina

Personalised recommendations