Communications in Mathematical Physics

, Volume 132, Issue 2, pp 365–382 | Cite as

The large-time asymptotics of some wiener integrals and the interband light absorption coefficient in the deep fluctuation spectrum

  • W. Kirsch
  • L. A. Pastur


In this paper we prove the existence of the interband-light-absorption coefficient and investigate its asymptotics for a number of models.


Neural Network Statistical Physic Absorption Coefficient Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonch-Bruevich, V.L., Enderlein, R., Esser, B., Kneiper, R., Mironov, A.G., Zuyagagin, I.P.: Elektronentheorie Ungeordneter Halbleiter. Berlin: Deutscher Verlag der Wissenschaften 1984Google Scholar
  2. 2.
    Efros, A.L., Shklowski, B.L.: Electronic properties of doped semiconductors. Berlin Heidelberg New York: Springer 1984Google Scholar
  3. 3.
    Lifshitz, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction in the theory of disordered systems. Moskau: Nauka 1982 and New York: Wiley 1988Google Scholar
  4. 4.
    Arbuzov, Yu.D., Evdokimov, V.M., Kolenkin, M.Yu.: JETP92, 1351–1356 (1987)Google Scholar
  5. 5.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978Google Scholar
  6. 6.
    Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979Google Scholar
  7. 7.
    Krengel, U.: Ergodic theorems. Berlin: de Gruyter 1985Google Scholar
  8. 8.
    Pastur, L.A.: Russ. Math. Surveys28, 1–67 (1973)Google Scholar
  9. 9.
    Gikhman, I.I., Skorokhod, A.V.: Introduction to the theory of random processes. Philadelphia: Saunders 1969Google Scholar
  10. 10.
    Kirsch, W., Martinelli, F.: J. Phys. A15, 2139–2156 (1982)Google Scholar
  11. 11.
    Kirsch, W.: Adv. Appl. Math.6, 177–187 (1985)Google Scholar
  12. 12.
    Bratelli, O.: Robinson, D.W.: Operator algebras and quantum statistical mechanics. II. Berlin Heidelberg New York: Springer 1981Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • W. Kirsch
    • 1
  • L. A. Pastur
    • 2
  1. 1.Institut für MathematikRuhr-Universität BochumBochumGermany
  2. 2.Institute for Low Temperature Physics and EngeneeringAcademy of Sciences of the Ukrainian SSRKh'arkovUSSR

Personalised recommendations