Advertisement

Communications in Mathematical Physics

, Volume 153, Issue 2, pp 321–337 | Cite as

Classification of generic 3-dimensional Lagrangian singularities with (Z2) l -symmetries

  • Stanislaw Janeczko
  • Adam Kowalczyk
Article

Abstract

The paper provides the complete list of local models forZ 2 l -invariant generic germs of Lagrangian submanifolds of dimension ≦3. Classification is done directly for genrating functions of Lagrangian submanifolds and contains both elementary singularities and non-elementary ones with continuous moduli. The results demonstrate, in particular, that in contrast to the non-equivariant case the classification of equivariant Lagrangian singularities is not subordinated to the classification of symmetric functions up to the right equivariant equivalences.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics. Reading, MA: Benjamin/Cummings 1978Google Scholar
  2. 2.
    Arnold, V.I.: Normal forms of functions near degenerate critical points, the Weyl groups ofA k,D k,E k and Lagrangian singularities. Funct. Anal. Appl.6, 254–272 (1972)CrossRefGoogle Scholar
  3. 3.
    Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. 1. Boston: Birkhäuser (1985), Engl. ed.Google Scholar
  4. 4.
    Arnold, V.I.: Singularities of systems of rays. Russ. Math. Surv.38, 87–176 (1983)Google Scholar
  5. 5.
    Berry, M.V., Upstill, C.: Catastrophe optics: Morphologies of caustics and their diffraction patterns. In: Wolf, E. (ed.). Progress in Optics XVIII, pp. 257–346, Amsterdam: North-Holland 1980Google Scholar
  6. 6.
    Bierstone, E.: Local properties of smooth maps equivariant with respect to finite group actions. J. Diff. Geom.10, 523–540 (1975)Google Scholar
  7. 7.
    Bröcker, Th., Lander, L.: Differentiable Germs and Catastrophes. Cambridge: Cambridge University Press, 1975Google Scholar
  8. 8.
    Duistermaat, J.J.: Oscillatory integrals, lagrange immersions and unfoldings of singularities. Commun. Pure Appl. Math.27, 207–281 (1974)Google Scholar
  9. 9.
    Ericksen, J.L.: Changes in symmetry in elastic crystals. In: Proc. JUTAM Symp. on Finite Elasticity, pp. 167–177. Martinus Nijhoff Publishers 1981Google Scholar
  10. 10.
    Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Vol. 1. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  11. 11.
    Guillemin, V.M., Sternberg, S.: Geometric Asymptotics. Providence, RI: Am. Math. Soc., 1976Google Scholar
  12. 12.
    Guillemin, V.M., Sternberg, S.: Symplectic Techniques in Physics. London: Cambridge University Press 1984Google Scholar
  13. 13.
    Janeczko, S.: OnG-versal Lagrangian submanifolds. Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.31, 183–190 (1983)Google Scholar
  14. 14.
    Janeczko, S.: Generating families for images of Lagrangian submanifolds and open swallowtails. Mat. Proc. Cambridge Phil. Soc.10, 91–107 (1986)Google Scholar
  15. 15.
    Janeczko, S., Kowalczyk, A.: Equivariant singularities of Lagrangian manifolds and uniaxial ferromagnet. SIAM Jour. Appl. Math.47, 1342–1360 (1987)CrossRefGoogle Scholar
  16. 16.
    Janeczko, S., Kowalczyk, A.: Stability criteria and classification of singularities for equivariant Lagrangian submanifolds. Rep. Math. Phys.26, 17–43 (1988)CrossRefGoogle Scholar
  17. 17.
    Janeczko, S., Roberts, M.: Classification of symmetric caustics. I. Symplectic equivalence. In: Proc. of the Warwick Symp. on Sig. Theory and its Appl. Vol. II. Singularities, bifurcations, and dynamics. Springer Lect. Notes Math., Vol. 1463, pp. 193–219. Berlin, Heidelberg, New York: Springer 1991Google Scholar
  18. 18.
    Poénaru, V.: SingularitiesC en Présence de Symétrie, Vol.510 of LNM. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  19. 19.
    Schwarz, G.: Smooth functions invariant under the action of a compact lie group. Topology14, 63–69 (1975)CrossRefGoogle Scholar
  20. 20.
    Siersma, D.: Singularities of functions on boundaries, corners, etc. Quart. J. Math. Oxford (2)32, 119–127 (1981)Google Scholar
  21. 21.
    Slodowy, P.: Einige Bemerkungen zur Entfaltung symmetrischer Funktionen. Math. Z.158, 157–170 (1978)CrossRefGoogle Scholar
  22. 22.
    Thom, R.: Structural stability and morphogenesis. New York: Benjamin 1975Google Scholar
  23. 23.
    Wall, C.T.C.: Equivariant jets. Math. Ann.7, 41–65 (1985)CrossRefGoogle Scholar
  24. 24.
    Wasserman, G.: Classification of singularities with compact abelian symmetry. Regensburger Math. Schriften, Univ. Regensburg 1977Google Scholar
  25. 25.
    Zakalyukin, V.M.: Lagrangian and Legendrian singularities. Funct. Anal. Appl.10, 23–31 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Stanislaw Janeczko
    • 1
  • Adam Kowalczyk
    • 2
  1. 1.Department of MathematicsMonash UniversityClaytonAustralia
  2. 2.Telecom Australia Research LaboratoriesClaytonAustralia

Personalised recommendations