Advertisement

Communications in Mathematical Physics

, Volume 152, Issue 3, pp 565–590 | Cite as

An algebraic approach to the planar coloring problem

  • Kauffmann
  • H. Saleur
Article

Abstract

We point out a general relationship between the planar coloring problem withQ colors and the Temperley-Lieb algebra with parameter\(\sqrt Q \). This allows us to give a complete algebraic reformulation of the four color result, and to give algebraic interpretations of various other aspects of planar colorings.

Keywords

Color Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH] Appel, K.I., Haken, W.: Every planar map is four colorable. Bull. Am. Math. Soc.82, 711 (1976)Google Scholar
  2. [Ba] Baxter, R.J.: Exactly solved models in statistical mechanics. New York: Academic Press, 1982Google Scholar
  3. [Be] Beraha, S.: Infinite non-trivial families of maps and chromials. Thesis, Johns Hopkins UniversityGoogle Scholar
  4. [Be1] Beraha, S., Kahane, J., Weiss, N.J.: J. Comb. Theory B28, 52 (1980)CrossRefGoogle Scholar
  5. [D] Dieudonne, J.: Pour l'honneur de l'esprit humain. Les Mathématiques aujourd'hui. Paris (1991)Google Scholar
  6. [F] Fary, I.: On the straight line representations of planar graphs. Acta. Sci. Math.11, 229 (1948)Google Scholar
  7. [GHJ] Goodman, F.M., Harpe, P. de la, Jones, V.: Coxeter graphs and towers of algebras. Mathematical Sciences Research Institute Publications. 14. Berlin, Heidelberg, New York: Springer. 1989Google Scholar
  8. [He] Heawood, P.J.: On the four colour map theorem. Quart. J. Math.29, 270 (1898)Google Scholar
  9. [Jo] Jones, V.: Invent. Math.72, 1 (1983)CrossRefGoogle Scholar
  10. [Ka 1] Kauffman, L. H.: State models and the Jones polynomial. Topology26, 395 (1987)CrossRefGoogle Scholar
  11. [Ka 2] Kauffman, L.H.: Statistical mechanics and the Jones polynomial. Proceedings of the 1986 Santa Cruz conference on Artin's Braid Group, A.M.S. Contemp. Math. Series78, 263 (1989)Google Scholar
  12. [Ka 3] Kauffman, L.H.: Map coloring and the vector cross product. J. Comb. Th.B.48, 145 (1990)CrossRefGoogle Scholar
  13. [Ke] Kempe, A.B.: On the geographical problem of four colors. Am. J. Math.2, 193 (1879)Google Scholar
  14. [Pe] Penrose, P.: Applications of negative dimensional tensors. In: Combinatorial mathematics and its applications. Welsk, D.J.A. (ed.), New York, London: Academic Press, 1971Google Scholar
  15. [PW] Perk, J., Wu, F.Y.: Non-intersecting string model and graphical approach: equivalence with a Potts model. J. Stat. Phys.42, 727 (1986)CrossRefGoogle Scholar
  16. [Sa] Saleur, H.: Zeroes of chromatic polynomials: a new approach to the Beraha conjecture using quantum groups. Commun. Math. Phys.132, 657 (1990)Google Scholar
  17. [SB] Saleur, H., Bauer, M.: On some relations between local height probabilities and conformal invariance. Nucl. Phys. B320, 591 (1989)CrossRefGoogle Scholar
  18. [SK] Saaty, T.L., Kainen, P.C.: The four color problem. New York: McGraw Hill, 1977 (and references therein)Google Scholar
  19. [TL] Temperley, H.N.V., Lieb, E.H.: Relations between the percolation and coloring problem and other graph theoretical problems associated with regular planar lattices. Proc. Roy. Soc. (London) A322, 151 (1971)Google Scholar
  20. [Ta] Tait, L.G.: Remarks on the coloring of maps. Proc. R. Soc. (Edinburgh)10, 71 (1980)Google Scholar
  21. [W] Wu, F.Y.: Graph theory in statistical mechanics. In: Studies in foundations and combinations. Adv. in Math. Suppl. Studies1, 151 (1978)Google Scholar
  22. [We] Wenzl, H.: Invent. Math.92, 349 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Kauffmann
    • 1
  • H. Saleur
    • 2
  1. 1.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations