Communications in Mathematical Physics

, Volume 127, Issue 1, pp 181–186 | Cite as

A topological characterization of classical BRST cohomology

  • José M. Figueroa-O'Farrill


The recent identification of classical BRST cohomology with the “vertical cohomology” of a certain fibration is used to compute it in terms of the classical observables and the topology of the gauge orbits. When the gauge orbits are compact and orientable, a duality theorem is exhibited.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubois-Violette, M.: Ann. Inst. Fourier37, 45 (1987)Google Scholar
  2. 2.
    Henneaux, M., Teitelboim, C.: Commun. Math. Phys.115, 213 (1988)Google Scholar
  3. 3.
    Fisch, J., Henneaux, M., Stasheff, J., Teitelboim, C.: Existence, uniqueness, and cohomology of the classical BRST charge with ghosts of ghosts (Preprint, 1988)Google Scholar
  4. 4.
    Vaisman, I.: Czechosl. Math.21, 46 (1971)Google Scholar
  5. 5.
    Buchdahl, N.: Am. Math. Soc.87, 363 (1983)Google Scholar
  6. 6.
    El Kacimi-Alaoui, A.: Compositio Math.49, 195 (1983)Google Scholar
  7. 7.
    Henneaux, M.: Duality theorems in BRST cohomology (Bruxelles Preprint, 1988)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • José M. Figueroa-O'Farrill
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations