Skip to main content
Log in

Damage and erosion at ceramic Windows due to high-power millimeter waves

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The damage that occurs at alumina windows of high-power millimeter wave gyrotrons operating in TE0,n mode is investigated. This damage appears only on the air side of the window where it yields small spot-like features (diameter <1 mm) and circular "melting" patterns (diameter >1 cm). The damage observed is thought to be related to rf field enhancements by resonances of trapped electromagnetic modes and by protrusions and contaminations of the ceramic surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nickel, H.-U., Heidinger, R., 1992, A survey of vacuum-windows for high-energy millimeter-wave systems in fusion experiments, 20th Symp. on Electromagnetic Windows, Atlanta, Georgia, Proceedings, 62–71.

  2. Nickel, H.-U., Halbritter, J., 1991, Surface melting at ceramic windows due to high-power millimeter waves, 16th Int. Conf. on Infrared and Millimeter Waves, Lausanne, Switzerland, Conference Digest, SPIE Vol. 1576, 456–457.

    Google Scholar 

  3. Borie, E., Gantenbein, G., Jödicke, B., Dammertz, G., Dumbrajs, O., Geist, T., Hochschild, G., Kuntze, M., Nickel, H.-U., Piosczyk, B., Thumm, M., 1992, Mode competition using TE03 gyrotron cavities,Int. J. of Electronics,72, 687–720, the damage occurred at the gyrotron here referred to as the prototype tube. A detailed description of the window is given in Bachmor, R., 1989, Entwicklung der technologischen Grundlagen eines hochbelastbaren Auskoppelfensters für ein 200 kW Langpulsgyrotron bei 140 GHz, ITG-Fachtagung für Vakuumelektronik und Displays, Garmisch-Partenkirchen, Germany, ITG-Fachbericht 108, 203–207.

    Google Scholar 

  4. Behm, K., 1986, Hochleistungs-Gyrotrons für 70 GHz, NTG-Fachtagung für Elektronenröhren und Vakuumelektronik, Garmisch-Partenkirchen, Germany, NTG-Fachbericht 95, 63–68

  5. Bachmor, R., 1990, private communication.

  6. Pochelon, A. Goodman, T., Whaley, D., Tran, M.Q., Perrenoud, A., Reinhard, D., Jödicke, B., Mathews, H.-G., Kasparek, W., Thumm, M., 1990, 39 GHz ECRH system for breakdown studies on the TCA Tokamak, 16th Symposium on Fusion Technology, London, United Kingdom, Proceedings, 1075–1079

  7. Mathews, H.-G., 1991, private communication.

  8. Kasparek, W., Kumrić, H., Müller, G.A., Schüller, P.G., Erckmann, V., 1991, Beam waveguide transmission line for the 140 GHz ECRH system at the stellarator W7-AS, International School of Plasma Physics, Course and Workshop on High Power Microwave Generation and Applications, Villa Monastero, Varenna, Italy, Proceedings, Vol. ISPP-10, 519–524.

  9. Kasparek, W., Müller, G.A., Schüller, P.G., Thumm, M., Wilhelm, R., Erckmann, V., 1986, The 70 GHz/1 MW long-pulse ECRH system on the advanced stellarator W VII-AS, 14th Symposium on Fusion Technology, Avignon, France, Proceedings, 829–834

  10. Kasparek, W., Kumrić, H., Müller, G.A., Schüller, P.G., Thumm, M., Erckmann, V., 1988, Microwave technology and tests of the 70 GHz/1 MW long-pulse ECRH system on the advanced stellarator W VII-AS, 15th Symposium on Fusion Technology, Utrecht, The Netherlands, Proceedings, 490–494.

  11. Landau, L.D., Lifschitz, E.M., 1967,Lehrbuch der Theoretischen Physik, Band 8, Berlin: Akademie Verlag, p. 299.

    Google Scholar 

  12. Heidinger, R., 1993, private communication.

  13. Halbritter, J., 1985, On contamination of electrode surfaces and electric field limitations,IEEE Trans. on Electrical Insulation,20, 671–681

    Google Scholar 

  14. Halbritter, J., 1986, Dynamical enhanced electron emission and discharges at contaminated surfaces,Applied Physics A,39, 49–57.

    Article  Google Scholar 

  15. Halbritter, J., 1972, Electron loading of superconducting rf cavities,Particle Accelerators,3, 163–174.

    Google Scholar 

  16. Saito, Y., Michizono, S., Anami, S., Kobayashi, S., 1992, Surface flashover on alumina rf windows for high-power use, 15th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Darmstadt, Germany, Proceedings, 227–231

  17. Saito, Y., Matuda, N., Anami, S., Kinbara, A., Horikoshi, G., Tanaka, J., 1989, Breakdown of alumina rf windows,IEEE Trans. on Electrical Insulation,24, 1029–1032.

    Article  Google Scholar 

  18. Schwirzke, F., 1991, Vacuum breakdown on metal surfaces,IEEE Trans. on Plasma Science,19, 690–696

    Article  Google Scholar 

  19. Schwirzke, F., Hallal, M.P., Maruyama, X.K., 1992, Ion formation on the surfaces of electrodes,Nuclear Instr. and Methods in Physics Research B,67, 554–559.

    Article  Google Scholar 

  20. Kark, K.W., 1987, Theoretische Untersuchung der Ausbreitung elektromagnetischer Wellen in schwach inhomogenen Hohlleitern, Research Report DFVLR-FB 87–23, Institut für Hochfrequenztechnik der DFVLR, Oberpfaffenhofen, Germany, 37–38.

  21. Quine, J.P., 1968, Oversize tubular metallic waveguides, in Okress, E.C. (Ed.),Microwave power engineering, Vol. 1, New York: Academic Press, pp. 178–213.

    Google Scholar 

  22. Nazaré, S., 1993, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, HU., Halbritter, J. Damage and erosion at ceramic Windows due to high-power millimeter waves. Int J Infrared Milli Waves 15, 651–664 (1994). https://doi.org/10.1007/BF02096481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096481

Keywords

Navigation