Te-waves guided by arbitrary nonlinear dielectrics bounded by linear media

  • Jian-Guo Ma


Considerable interest is currently being devoted to nonlinear propagation in dielectric slab waveguides for integrated optics and millimetric applications. Much of the current work is based on Kerr-like (∈ ∼E2) nonlinear media and numerically discussed. We present a exact solution of TE-waves for arbitrary nonlinear dielectric (∈ ∼ |E| δ ). We applicate this solution to the planar nonlinear optic waveguides and the dispersion relations are given. The results show that the propagation constants are a function of the field magnitude.


Exact Solution Dispersion Relation Current Work Propagation Constant Optic Waveguide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Gatz and J. Herrmann: “Soliton Propagation in Material with Saturable Nonlinearity”, J. Opt. Soc. Am.B, Vol.8, no.11, pp.2296–2302, 1991Google Scholar
  2. [2]
    Jian-Guo Ma: “Propagation Properties of TE-Soliton in Rectangular Waveguides with Nonlinear Dielectrics”, Int. J. Infrared and Millimeter Waves(USA), Vol.11, no.9, pp.1033–1045, 1990CrossRefGoogle Scholar
  3. [3]
    P.M. Goojian and A. Taflove: “Direct Time Integration of Maxwell's Equations in Nonlinear Dispersive Media for Propagation and Scattering of Femtosecond Electromagnetic Soliton”, Optics Letter(USA), Vol.17, no.3, pp.180–182, 1992Google Scholar
  4. [4]
    H.T. Tran and A. Ankiewicz: “Instability Regions of Nonlinear Planar Guided Waves”, IEEE J. Quantum Electronics, Vol.QE-28, no.2, pp.488–492, 1992CrossRefGoogle Scholar
  5. [5]
    T. Rozzi, F. Chiaraluce and L. Zappelli: “Phase — Plane Approach to Nonlinear Propagation in Dielectric Slab Waveguide”, IEEE MTT-40, no.1, pp.102–111, 1992Google Scholar
  6. [6]
    D. Marcuse: “RMS Width of Pulse in Nonlinear Dispersive Fibers”, J. Lightwave Technology(USA), Vol.10, no.1, pp.17–21, 1992CrossRefGoogle Scholar
  7. [7]
    Y. Chen: “Nonlinear fibers with Arbitrary Nonlinearity”, J. Opt. Soc. Am.B, Vol.8, no.11, pp.2338–2341, 1991Google Scholar
  8. [8]
    N. Saiga: “Calculation of TE Modes in Graded-Index Nonlinear Optical Waveguides with Arbitrary Profile of Refractive Index”, J. Opt.Soc. Am.B, Vol.8, no.1, pp.88–94, 1991Google Scholar
  9. [9]
    T-T. Shi and S. Chi: “Beam Propagation Method Analysis of Trasnsverse-Electric Waves Propagating in a Nonlinear Tapered Planar Waveguide”, J. Opt.Soc. Am.B, Vol.8, no.11, pp.2318–2325, 1991Google Scholar
  10. [10]
    S. Okafuji and Y. Nakai: “Nonlinear TE Waves in Asymmetric Dielectric Hollow Waveguides with a Self-Focusing Kerr-Like Nonlinear Film”, IEE Proc.-J, Vol.138, no.3, June 1991, pp.204–209Google Scholar
  11. [11]
    U. Trutschel, F. Lederer and M. Golz: “Nonlinear guided Waves in Multilayer Systems”, IEEE J.Quantum Electronics, Vol.QE-25, o.2, pp.194–200, 1989CrossRefGoogle Scholar
  12. [12]
    W. Chen and A.A. Maradudin: “S-Polarized Guided and Surface Electromagnetic Waves Supported by a Nonlinear Film”, J. Opt. Soc. Am.B, Vol.5, no.2, pp.529–538, 1988Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Jian-Guo Ma
    • 1
  1. 1.Dept. Electronics and Information ScienceLanzhou UniversityLanzhouPeople's Republic of China

Personalised recommendations