Advertisement

The cyclotron autoresonance maser with a large-orbit electron ring in a dielectric-loaded waveguide

  • Yuan-Zhao Yin
Article

Abstract

The cyclotron autoresonace maser with a large-orbit electron ring in a dielectric-loaded waveguide has been analyzed. The stability properties are investigated self-consistently on the basis of the linearized Vlasov-Maxwell equations. The numerical results show the growth rate increases when the electron rotating ratio increases. And the dielectric liner can greatly reduce the energy of the electron beam.

Keywords

Growth Rate Electron Beam Liner Rate Increase Stability Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    J.L. Hirchfield, K.R. Chu, and S. Kainer, Appl. Phys. Lett. 33, 847(1978).CrossRefGoogle Scholar
  2. [2]
    V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, M.I. Petelin, and P.S. Strelkov, Int. J. Electron. 51, 541(1981).Google Scholar
  3. [3]
    V.L. Bratman, G.G. Denisov, N.S. Ginzburg, and M.I. Petelin, IEEE J. Quantum Electron. QE-19, 282(1983).CrossRefGoogle Scholar
  4. [4]
    T. Lin, Int.J.Electron. 57, 1097(1984).Google Scholar
  5. [5]
    T. Lin and C.C. Lin, Int.J.Infrared Millimeter Waves 6,411985).CrossRefGoogle Scholar
  6. [6]
    A.W. Fliflet, Int.J.Electron. 61, 1049(1986).Google Scholar
  7. [7]
    R.C. Davidson and H.S. Uhm, Phys. Fluids 29,2713(1986).CrossRefGoogle Scholar
  8. [8]
    A.T. Lin and C.C. Lin, Phys. Fluids 29, 1348(1986); K.R.Chu and A.T.Lin, IEEE Trans. Plasma Sci. 16,90(1988).CrossRefGoogle Scholar
  9. [9]
    A.T. Lin, K.R. Chu, and A. Bromborsky, IEEE Trans. Electron Devices ED-34, 2621 (1987).Google Scholar
  10. [10]
    J.K. Lee, W.D. Bard, S.C. Chiu, R.C. Davidson, and R.R. Goforth, Phys. Fluids 31, 1824(1988).CrossRefGoogle Scholar
  11. [11]
    K.D. Pendergast, B.G. Danly, R.J. Temkin, and J.S. Wurtele, IEEE Trans. Plasma. Sci. 16,122(1988); C.Chen and J.S. Wurtele, Phys. Rev. A40, 489(1989).CrossRefGoogle Scholar
  12. [12]
    J.G. Wang, R.M. Gilgenbach, J.J. Choi, C.A. Outten, and T.A. Spencer, IEEE Trans. Plasma Sci. PS-16, 122(1989).Google Scholar
  13. [13]
    J.A. Davies, Phys. Fluids B2, 663(1989).Google Scholar
  14. [14]
    G. Bekefi, A. DiRienzo, C. Leibovitch, and B.G. Danly, Appl. Phys. Lett. 54, 1302(1989);A.C.DiRienzo, G.Bekefi, C.Chen, and J.S.Wurtele, Phys. Fluids B3, 1755(1991).CrossRefGoogle Scholar
  15. [15]
    R.G. Kleva, B. Levush, and P. Sprangle, Phys. Fluids B2, 185(1990).Google Scholar
  16. [16]
    C. Chen and J.S. Wurtele, Phys. Fluids B3, 2133(1991).Google Scholar
  17. [17]
    P. Sprangle, J. Appl. PHys. 47, 2935 (1976).CrossRefGoogle Scholar
  18. [18]
    W. W. Destler, D. W. Huddings, M. J. Rhee, S. Kawasaki, and V. L. Granatstein, J. Appl. Phys. 48, 3291 (1977).CrossRefGoogle Scholar
  19. [19]
    H. S. Uhm and R. C. Davidson, Phys. Fluids 21, 265(1978).CrossRefGoogle Scholar
  20. [20]
    W. W. Destler, H. Romero, C. D. Striffler, R. L. Weiler, and W. Namkung, J. Appl. Phys. 52, 2740 (1981).CrossRefGoogle Scholar
  21. [21]
    D.B. McDermott, N.C. Luhmann, jr., and A. Kupiszewski, Phys. Fluids 26, 1936(1983).CrossRefGoogle Scholar
  22. [22]
    W. Lawson and C. D. Striffler, Phys. Fluids 28, 2868 (1985).CrossRefGoogle Scholar
  23. [23]
    W. Lawson and C. D. Striffer, Phys. Fluids 29, 1682 (1986).CrossRefGoogle Scholar
  24. [24]
    S.C. Zhang and S. Yan, IEEE J. Quantum Electron. QE-23, 1646(1987).CrossRefGoogle Scholar
  25. [25]
    D.S. Furuno, D.B. McDermott, C.S. Kou, N.C. Luhmann, Jr., and P. Vitello, IEEE Trans. Plasma Sci. 18,313 (1990).CrossRefGoogle Scholar
  26. [26]
    M.J. Rhee and W.W. Destler, Phys. Fluids 17,1574(1974).CrossRefGoogle Scholar
  27. [27]
    W.W. Destler, F.M. Aghamir, D.A. Boyd, G. Bekefi, R.E. Shefer, and Y.Z. Yin, Phys. Fluids 28, 1962(1985).CrossRefGoogle Scholar
  28. [28]
    W. Lawson and P.E. Latham, J.Appl. Phys. 61, 519(1987).CrossRefGoogle Scholar
  29. [29]
    E.P. Garate and J.E. Walsh, IEEE Trans. Plasma Sci. 13, 524(1985)Google Scholar
  30. [30]
    W. Main, R. Cherry, and E. Garate, IEEE Trans. Plasma Sci. 18, 507(1990).CrossRefGoogle Scholar
  31. [31]
    V.K. Tripathi and C.S. Liu, IEEE Trans. Plasma Sci. 17,583(1989).CrossRefGoogle Scholar
  32. [32]
    J.S. Choi, D.E. Kim, D.I. Choi, S.C. Yang, and S. Uhm, Phys. Fluids B1, 1316(1989).Google Scholar
  33. [33]
    K.R. Chu, A.K. Ganguly, V.L. Granatstein, J.L. Hirshfield, S.Y. Park, and J.M. Baird, Int. J.Electron. 51, 493(1981).Google Scholar
  34. [34]
    H.S. Uhm and R.C. Davidson, Phys. Fluids 23, 2538(1980).CrossRefGoogle Scholar
  35. [35]
    D.B. McDermott, H. Cao, and N.C. Luhmann, Jr, Int. J.Electron. 65, 477(1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Yuan-Zhao Yin
    • 1
  1. 1.Institute of ElectronicsAcademia SinicaBeijingThe People's Republic of China

Personalised recommendations