Calculations of homogeneous nonlinear film transmittivity using a self-consistent linearizing method

  • G. S. Barbastathis
  • C. N. Capsalis
Article
  • 19 Downloads

Abstract

A stable iterative method for solving the nonlinear boundary value problem at nonlinear homogeneous film geometries is presented. The principle of consistency between field power and wavenumber is utilized and the resulting bistable and filtering behavior is investigated.

Keywords

Iterative Method Linearize Method Nonlinear Boundary Homogeneous Film Film Geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Chen and D.L. Mills, Physical Review B, Vol. 35, No. 2, pp. 524–532, 15 January 1987.Google Scholar
  2. 2.
    K.M. Leung, J. Opt. Soc. Am. B, Vol. 5, No. 2, pp. 571–574, February 1988.Google Scholar
  3. 3.
    K.M. Leung, Physical Review B, Vol. 39, No. 6, pp. 3590–3598, 15 February 1989.CrossRefGoogle Scholar
  4. 4.
    K.M. Leung and R.L. Lin, Physical Review B, Vol. 44, No. 10, pp. 5007–5012, 1 September 1991.CrossRefGoogle Scholar
  5. 5.
    R. Reinisch and G. Vitrant, Physical Review B, Vol. 39, No. 9, pp. 5775–5777, 15 March 1989.CrossRefGoogle Scholar
  6. 6.
    K.L. Stokes and A. Puri, Opt. Let. Vol. 15, No. 17, pp.986–988, 1 September 1990.Google Scholar
  7. 7.
    C.N. Capsalis, G.S. Barbastathis and C.P. Chronopoulos, Int. J. Infrared and Millim. Waves, Vol. 12, No. 9, September 1991.Google Scholar
  8. 8.
    G.S.Barbastathis, C.N.Capsalis and C.P.Chronopoulos, 2nd Workshop on Wave Propagation Problems, Foundation for Technology and Research, Iraklion Crete, June 15–16, 1992 (Proceedings under preparation).Google Scholar
  9. 9.
    S. Dutta Gupta and G.S. Agarwal, J.Opt.Soc.Am. B, Vol.4, No.5, pp. 691–695, 1987.Google Scholar
  10. 10.
    G.S. Agarwal and S. Dutta Gupta, Optics Letters, Vol. 12, No. 10, pp.829–831, 1987.Google Scholar
  11. 11.
    S. Dutta Gupta, J.Opt.Soc.Am. B, Vol.6, No. 8, pp.1607–1610, 1989.Google Scholar
  12. 12.
    G.P. Agrawal, "Nonlinear Fiber Optics", Academic Press, New York 1989.Google Scholar
  13. 13.
    A. Hasegawa, "Optical Solitons in Fibers", Springer-Verlag, New York 1990.Google Scholar
  14. 14.
    R.H. Stolen and C. Lin, Phys. Rev. A17, 1448(1978).Google Scholar
  15. 15.
    A.E. Kaplan, Sov. Phys. JETP, Vol. 45 (5), pp. 896–905, 1977.Google Scholar
  16. 16.
    A.E. Kaplan, in "Optical Bistability", ed. C.M. Bowden, M. Ciftan and H.R. Robl, Plenum Press, New York 1981.Google Scholar
  17. 17.
    G.A. Swartzlander and A.E. Kaplan, J. Opt. Soc. Am. B, Vol. 5, No.4, pp. 709–713, April 1988.Google Scholar
  18. 18.
    R. Frey and B. Thedrez, J.Opt.Soc.Am. B, Vol.5, No. 5, pp. 1176–1180, 1988.Google Scholar
  19. 19.
    A. Aceves, J.V. Moloney and A.C. Newell, J.Opt.Soc.Am. B, Vol.5, No.2, pp.559–564, 1988.Google Scholar
  20. 20.
    F. Ouellette and M. Piche, J.Opt.Soc.Am. B, Vol.5, No. 6, 1988.Google Scholar
  21. 21.
    M.Born and E.Wolf, "Principles of Optics" (6th ed.), Pergamon Press, 1989.Google Scholar
  22. 22.
    We intend to show similar results in future work that is currently in progress.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • G. S. Barbastathis
    • 1
  • C. N. Capsalis
    • 1
  1. 1.Department of Electrical and Computer Engineering Microwave and Fiber Optics LaboratoryNational Technical University of AthensAthensGreece

Personalised recommendations