International Journal of Infrared and Millimeter Waves

, Volume 15, Issue 9, pp 1537–1554 | Cite as

Electromagnetic reflection and tramsission for a dielectric-Ω interface and an Ω slab

  • Martin Norgren
  • Sailing He


A time-harmonic electromagnetic plane wave obliquely incident on a half-space or a slab consisting of a so-called Ω medium is considered. The up- and down-going eigenmodes in the Ω medium are derived and used to calculate the reflection and transmission coefficients for TE and TM modes. The Brewster angles for an Ω half-space are computed. Numerical results for the co- and cross-polarized reflection and transmission coefficients for an Ω slab are presented.


Reflection Plane Wave Transmission Coefficient Brewster Angle Electromagnetic Plane Wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. L. Jaggard and N. Engheta, “Chirality in electrodynamics: Modelling and applications,” inDirections in Electromagnetic Wave Modelling, H. L. Bertoni and L. B. Felsen, eds. (Plenum Publishing Co., New York, 1993).Google Scholar
  2. [2]
    A. H. Sihvola and I. V. Lindell, “Bi-isotropic constitutive relations,”Microwave and Optical Technology Letters, Vol. 4, No. 8, 295–297 (1991).Google Scholar
  3. [3]
    S. Bassiri, C. H. Papas and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab”,J. Opt. Soc. Am., 5(9), 1450–1459 (1986).Google Scholar
  4. [4]
    S. He, “A time-harmonic Green function technique and wave propagation in a stratified nonreciprocal chiral slab with multiple discontinuities”,J. Math. Phys., 33(12), 4103–4110 (1992).Google Scholar
  5. [5]
    I. V. Lindell and A. J. Viitanen, “Plane wave propagation in a uniaxial bianisotropic medium,”Electronics Letters 29(2), 150–152 (1993).Google Scholar
  6. [6]
    A. J. Viitanen and I. V. Lindell, “Plane wave propagation in a uniaxial bianisotropic medium with an application to a polarization transformer,”Intern. J. Infrared Millim. Waves 14(10), 1993–2010 (1993).Google Scholar
  7. [7]
    F. Olyslager and D. De Zutter, “Rigourous full-wave analysis of electric and dielectric waveguides embedded in a multilayered bianisotropic medium,”Radio Science, 28(5), 937–946 (1993).Google Scholar
  8. [8]
    S. He and Y. Hu, “Electromagnetic scattering for a stratified biisotropic (nonreciprocal chiral) slab: numerical calculations”,IEEE Trans. Antennas Propagat. 41(8), 1057–1062 (1993).Google Scholar
  9. [9]
    S. He, “Wave propagation through a dielectric-uniaxial bianisotropic interface and the computation of Brewster angles”,J. Opt. Soc. Am. A, 10(11), 2402–2409 (1993).Google Scholar
  10. [10]
    N. Engheta and M. M. I. Saadoun, “Noval pseudochiral or Ω medium and its application,”Proc. Progress in Electromagnetic Research Symposium PIERS 1991, p. 339, Cambridge, Massachusetts, USA, July 1–5 (1991).Google Scholar
  11. [11]
    M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using noval pseudochiral or Ω medium,”Microwave Opt. Tech. Lett. 5(4), 184–187 (1992).Google Scholar
  12. [12]
    J. A. Kong,Electromagnetic Wave Theory, Chap. 5, 403; Chap. 2, p.117 (John Wiley & Sons, 1986).Google Scholar
  13. [13]
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. Part I. Scattering operators,”J. Math. Phys. 27, 1667–1682 (1986); “Part II. Simultaneous reconstruction of dissipation and phase velocity profiles,”J. Math. Phys. 27, 1683–1693 (1986).Google Scholar
  14. [14]
    G. Kristensson and S. Rikte, “Scattering of transient electromagnetic waves in bi-isotropic media,”J. Electro. Waves Applic. vol. 6, p.1517, 1992.Google Scholar
  15. [15]
    J. P. Corones and A. Karlsson, “Transient direct and inverse scattering for inhomogeneous viscoelastic media: obliquely incident SH mode,”,Inverse Problems, 4(3), 643–660 (1988).Google Scholar
  16. [16]
    R. J. Krueger and R. L. Ochs, “A Green's function approach to the determination of internal fields,”Wave Motion, 11, 525–543 (1989).Google Scholar
  17. [17]
    S. He and S. Ström, “The electromagnetic scattering problem in the time domain for a dissipative slab and a point source using invariant imbedding”,J. Math. Phys., 32(12), 3529–3539 (1991).Google Scholar
  18. [18]
    S. He, “Factorization of a dissipative wave equation and the Green functions technique for axially symmetric fields in a stratified slab,”J. Math. Phys., 33(3), 953–966 (1992).Google Scholar
  19. [19]
    S. He and V. H. Weston, “Inverse problem for the dissipative wave equation in a stratified half-space and linearization of the imbedding equation,”Inverse Problems, 8(3), 435–455 (1992).Google Scholar
  20. [20]
    V. H. Weston, “Time-domain wave splitting of Maxwell's equations,”J. Math. Phys., 34,(4), 1370–1392 (1993).Google Scholar
  21. [21]
    S. A. Tretyakov, F. Mariotte, C. R. Simovski, T.G. Kharina, and S. Bolioli, “Antenna model for individul chiral and omega scatterers,”Chiral94, 3rd International Workshop on chiral, bi-isotropic and bi-anisotropic media, pp. 41–48, F. Mariotte and J-P. Parneix, eds., Perigueux, France, May 18–20, 1994.Google Scholar
  22. [22]
    T. Robin, B. Souillard, R. Accolas, P. Theret, and S. Bolioli, “Modelling of electromagnetic properties of helix-loaded chiral media,”Chiral94, 3rd International Workshop on chiral, bi-isotropic and bianisotropic media, pp. 103–108, F. Mariotte and J-P. Parneix, eds., Perigueux, France, May 18–20, 1994.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Martin Norgren
    • 1
  • Sailing He
    • 1
  1. 1.Department of Electromagnetic TheoryRoyal Institute of TechnologyStockholmSweden

Personalised recommendations