Advertisement

International Journal of Infrared and Millimeter Waves

, Volume 15, Issue 9, pp 1537–1554 | Cite as

Electromagnetic reflection and tramsission for a dielectric-Ω interface and an Ω slab

  • Martin Norgren
  • Sailing He
Article

Abstract

A time-harmonic electromagnetic plane wave obliquely incident on a half-space or a slab consisting of a so-called Ω medium is considered. The up- and down-going eigenmodes in the Ω medium are derived and used to calculate the reflection and transmission coefficients for TE and TM modes. The Brewster angles for an Ω half-space are computed. Numerical results for the co- and cross-polarized reflection and transmission coefficients for an Ω slab are presented.

Keywords

Reflection Plane Wave Transmission Coefficient Brewster Angle Electromagnetic Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. L. Jaggard and N. Engheta, “Chirality in electrodynamics: Modelling and applications,” inDirections in Electromagnetic Wave Modelling, H. L. Bertoni and L. B. Felsen, eds. (Plenum Publishing Co., New York, 1993).Google Scholar
  2. [2]
    A. H. Sihvola and I. V. Lindell, “Bi-isotropic constitutive relations,”Microwave and Optical Technology Letters, Vol. 4, No. 8, 295–297 (1991).Google Scholar
  3. [3]
    S. Bassiri, C. H. Papas and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab”,J. Opt. Soc. Am., 5(9), 1450–1459 (1986).Google Scholar
  4. [4]
    S. He, “A time-harmonic Green function technique and wave propagation in a stratified nonreciprocal chiral slab with multiple discontinuities”,J. Math. Phys., 33(12), 4103–4110 (1992).Google Scholar
  5. [5]
    I. V. Lindell and A. J. Viitanen, “Plane wave propagation in a uniaxial bianisotropic medium,”Electronics Letters 29(2), 150–152 (1993).Google Scholar
  6. [6]
    A. J. Viitanen and I. V. Lindell, “Plane wave propagation in a uniaxial bianisotropic medium with an application to a polarization transformer,”Intern. J. Infrared Millim. Waves 14(10), 1993–2010 (1993).Google Scholar
  7. [7]
    F. Olyslager and D. De Zutter, “Rigourous full-wave analysis of electric and dielectric waveguides embedded in a multilayered bianisotropic medium,”Radio Science, 28(5), 937–946 (1993).Google Scholar
  8. [8]
    S. He and Y. Hu, “Electromagnetic scattering for a stratified biisotropic (nonreciprocal chiral) slab: numerical calculations”,IEEE Trans. Antennas Propagat. 41(8), 1057–1062 (1993).Google Scholar
  9. [9]
    S. He, “Wave propagation through a dielectric-uniaxial bianisotropic interface and the computation of Brewster angles”,J. Opt. Soc. Am. A, 10(11), 2402–2409 (1993).Google Scholar
  10. [10]
    N. Engheta and M. M. I. Saadoun, “Noval pseudochiral or Ω medium and its application,”Proc. Progress in Electromagnetic Research Symposium PIERS 1991, p. 339, Cambridge, Massachusetts, USA, July 1–5 (1991).Google Scholar
  11. [11]
    M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using noval pseudochiral or Ω medium,”Microwave Opt. Tech. Lett. 5(4), 184–187 (1992).Google Scholar
  12. [12]
    J. A. Kong,Electromagnetic Wave Theory, Chap. 5, 403; Chap. 2, p.117 (John Wiley & Sons, 1986).Google Scholar
  13. [13]
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. Part I. Scattering operators,”J. Math. Phys. 27, 1667–1682 (1986); “Part II. Simultaneous reconstruction of dissipation and phase velocity profiles,”J. Math. Phys. 27, 1683–1693 (1986).Google Scholar
  14. [14]
    G. Kristensson and S. Rikte, “Scattering of transient electromagnetic waves in bi-isotropic media,”J. Electro. Waves Applic. vol. 6, p.1517, 1992.Google Scholar
  15. [15]
    J. P. Corones and A. Karlsson, “Transient direct and inverse scattering for inhomogeneous viscoelastic media: obliquely incident SH mode,”,Inverse Problems, 4(3), 643–660 (1988).Google Scholar
  16. [16]
    R. J. Krueger and R. L. Ochs, “A Green's function approach to the determination of internal fields,”Wave Motion, 11, 525–543 (1989).Google Scholar
  17. [17]
    S. He and S. Ström, “The electromagnetic scattering problem in the time domain for a dissipative slab and a point source using invariant imbedding”,J. Math. Phys., 32(12), 3529–3539 (1991).Google Scholar
  18. [18]
    S. He, “Factorization of a dissipative wave equation and the Green functions technique for axially symmetric fields in a stratified slab,”J. Math. Phys., 33(3), 953–966 (1992).Google Scholar
  19. [19]
    S. He and V. H. Weston, “Inverse problem for the dissipative wave equation in a stratified half-space and linearization of the imbedding equation,”Inverse Problems, 8(3), 435–455 (1992).Google Scholar
  20. [20]
    V. H. Weston, “Time-domain wave splitting of Maxwell's equations,”J. Math. Phys., 34,(4), 1370–1392 (1993).Google Scholar
  21. [21]
    S. A. Tretyakov, F. Mariotte, C. R. Simovski, T.G. Kharina, and S. Bolioli, “Antenna model for individul chiral and omega scatterers,”Chiral94, 3rd International Workshop on chiral, bi-isotropic and bi-anisotropic media, pp. 41–48, F. Mariotte and J-P. Parneix, eds., Perigueux, France, May 18–20, 1994.Google Scholar
  22. [22]
    T. Robin, B. Souillard, R. Accolas, P. Theret, and S. Bolioli, “Modelling of electromagnetic properties of helix-loaded chiral media,”Chiral94, 3rd International Workshop on chiral, bi-isotropic and bianisotropic media, pp. 103–108, F. Mariotte and J-P. Parneix, eds., Perigueux, France, May 18–20, 1994.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Martin Norgren
    • 1
  • Sailing He
    • 1
  1. 1.Department of Electromagnetic TheoryRoyal Institute of TechnologyStockholmSweden

Personalised recommendations