Current Microbiology

, Volume 20, Issue 6, pp 381–385 | Cite as

Bradyrhizobium japonicum subspecies (USDA 110 and 26) characterized by fixed-nitrogen uptake and symbiotic indoleacetic acid production

  • Tsuneo Kaneshiro
  • James J. Nicholson


Two dissimilar subspecies ofBradyrhizobium japonicum (USDA 110 and 26) differ in ammonia (NH3) assimilation and symbiotic indoleacetic acid (IAA) production. Free-living cultures of type-strain USDA 26 grow on NH3 as a sole N source and take up an NH3 analog, methylamine, whereas USDA strain 110 does neither. Although both strains nodulate soybean effectively, root nodules infected with symbiont 26 contain 0.3–1.1 μg IAA per gram fresh weight. Nodules infected by tryptophan catabolic variants 4b and 20d, derived from strain 26, also elicit an increased IAA content, two- to fourfold (2.0–3.9 μg · g−1). In contrast, nodules infected with the dissimilar subspecies (strains 110 and 123) contain significantly less IAA.


Nodule Ammonia Assimilation Tryptophan Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Badenoch-Jones J, Summons RE, Djordjevic MA, Shine J, Latham DS, Rolfe BG (1982) Mass spectrometric quantification of indole-3-acetic acid inRhizobium culture supernatants: relation to root curling and nodule formation. Appl Environ Microbiol 44:275–280Google Scholar
  2. 2.
    Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60:211–213Google Scholar
  3. 3.
    Cadmus MC, Jackson LK, Rutherford WM, Weisleder D, Slodki ME (1988) Enzymatic hydrolysis of rhizobial 4-O-methyl-d-glucurono-l-rhamnan. Carbohydr Res 184:203–212Google Scholar
  4. 4.
    Chen K-H, Miller AN, Patterson GW, Cohen JD (1987) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825Google Scholar
  5. 5.
    Cohen JD (1982) Identification and quantitative analysis of indole-3-acetyl-l-aspartate from seeds ofGlycine max L. Plant Physiol 70:749–753Google Scholar
  6. 6.
    Dudman WF (1978) Structural studies of the extracellular polysaccharides ofRhizobium japonicum strains 71A, CC708, and CB1795. Carbohydr Res 66:9–23Google Scholar
  7. 7.
    Gober JW, Kashket ER (1983) Methylammonium uptake byRhizobium sp. strain 32H1. J Bacteriol 153:1196–1201PubMedGoogle Scholar
  8. 8.
    Hollis AB, Kloos WE, Elkan GH (1981) DNA: DNA hybridization studies ofRhizobium japonicum and relatedRhizobiaceae. J Gen Microbiol 123:215–222Google Scholar
  9. 9.
    Huber TA, Agarwal AK, Keister DL (1984) Extracellular polysaccharide composition, ex planta nitrogenase activity, and DNA homology inRhizobium japonicum. J Bacteriol 158:1168–1171PubMedGoogle Scholar
  10. 10.
    Hunter WJ (1987) Influence of 5-methyltryptophan-resistantBradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol 53:1051–1055Google Scholar
  11. 11.
    Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76:31–36Google Scholar
  12. 12.
    Kaneshiro T, Nicholson JJ (1989) Tryptophan catabolism by tan variants isolated from enrichment cultures of bradyrhizobia. Curr Microbiol 18:57–60Google Scholar
  13. 13.
    Kaneshiro T, Kurtzman MA (1982) Glutamate as a differential nitrogen source for the characterization of acetylene-reducingRhizobium strains. J Appl Bacteriol 52:201–207Google Scholar
  14. 14.
    Kaneshiro T, Kwolek WF (1985) Stimulated nodulation of soybeans byRhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci 42:141–146Google Scholar
  15. 15.
    Keyser HH, van Berkum P, Weber DF (1982) A comparative study of the physiology of symbioses formed byRhizobium japonicum withGlycine max, Vigna unguiculata, andMacroptilium atropurpurem. Plant Physiol 70:1626–1630Google Scholar
  16. 16.
    Ludwig RA (1978) Control of ammonium assimilation inRhizobium 32H1. J Bacteriol 135:114–123PubMedGoogle Scholar
  17. 17.
    Mort AJ, Bauer WD (1982) Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments. Structure of the capsular and extracellular polysaccharides ofRhizobium japonicum that bind soybean lectin. J Biol Chem 257:1870–1875PubMedGoogle Scholar
  18. 18.
    O'Gara F, Shanmugam KT (1976) Control of symbiotic nitrogen fixation in rhizobia regulation of NH4+ assimilation. Biochim Biophys Acta 451:342–352PubMedGoogle Scholar
  19. 19.
    Rutherford WM, Dick Jr WE, Cavins JF, Dombrink-Kurtzman MA, Slodki ME (1986) Isolation and characterization of a soybean lectin having 4-O-methylglucouronic acid specificity. Biochemistry 25:952–958PubMedGoogle Scholar
  20. 20.
    Stanley J, Brown GG, Verma DPS (1985) Slow-growingRhizobium japonicum comprises two highly divergent symbiotic types. J Bacteriol 163:148–154PubMedGoogle Scholar
  21. 21.
    Wiegel J, Kleiner D (1982) Survey of ammonium (methylammonium) transport by aerobic N2-fixing bacteria—the special case ofRhizobium. FEMS Microbiol Lett 15:61–63Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Tsuneo Kaneshiro
    • 1
  • James J. Nicholson
  1. 1.U.S. Department of AgriculturePlant Biochemistry Research, Northern Regional Research Center, Agricultural Research ServicePeoriaUSA

Personalised recommendations