Skip to main content
Log in

The CO2, O2, and N2 gradients between alveolar air and arterial blood during steady-state exercise in healthy non-smoking young and elderly men at normoxia and at hypoxia

  • Published:
Pneumonologie Aims and scope Submit manuscript

Abstract

The CO2, O2, and N2 gradients between alveolar air and arterial blood were measured during a mild steady-state exercise test in three groups of non-smoking men, 20–29, 40–49, and 63–70 years old, respectively. Breathing a low O2-mixture (15.8% O2) the (a-A) D CO2 and the (a-A) D N2 decreased during exercise, compared to room air breathing, when the same exercise level was imposed, indicating a more homogeneous distribution of alveolar ventilation and perfusion under the influence of hypoxia. However, the (A-a) D O2 remained constant during both conditions, i. e. room air and hypoxia breathing. It is well known that the O2 gradient increases under both conditions with age. The failure to demonstrate an (a-A) D N2 when a large (A-a) D O2 is present, suggests the presence of large compartments of the lungs with a low diffusion/perfusion relation (rarification of capillaries and a relatively high number of shortly segmented capillaries). The low diffusion/perfusion regions seem to contribute much more to the large (A-a) D O2 than do the less important low ventilation/perfusion compartments. Such a constellation of maldistibution between alveolar ventilation, diffusion, and perfusion seems to be characteristic for the aging lung of non-smokers performing mild exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, E., Nielsen, M.: Alveolo-arterial gas exchange at rest and during work at different O2-tensions. Acta Physiol. Scand.50, 153 (1960)

    Google Scholar 

  2. Bachofen, H., Hobi, H. J., Scherrer, M.: Alveolar-arterial N2 gradients at rest and during exercise in healthy men of different ages. J. Appl. Physiol.34, 137 (1973)

    Google Scholar 

  3. Bitter, H. S., Rahn, H.: Studies in Respiratory Physiology. WADC, p. 466. Technical Report 1956

  4. Bitterli, J., Bachofen, H., Kyd, K., Scherrer, M.: Repeated measurements of pulmonary O2-diffusing capacity in man during graded exercise. p. 139. In: Scherrer, M.: Pulmonary diffusing capacity on exercise. Huber, Bern-Stuttgart-Wien 1971

    Google Scholar 

  5. Canfield, R. E., Rahn, H.: Arterial-alveolar N2 Gas Pressure Differences due to ventilation-perfusion variation. J. Appl. Physiol.10, 165 (1957)

    Google Scholar 

  6. Craig, D. B., Wahba, W. M., Don, H. F., Couture, J. G., Becklake, M. R.: “Closing volume” and its relationship to gas exchange in seated and in supine positions. J. Appl. Physiol.31, 717 (1971)

    Google Scholar 

  7. Dugard, A., Naimark, A.: Effect of hypoxia on distribution of pulmonary blood flow. J. Appl. Physiol.23, 663 (1967)

    Google Scholar 

  8. Eichna, L. W., Berge, A. R., Rader, B., Becker, W. H.: Comparison of intracardiac and intravascular temperatures with rectal temperatures in man. J. Clin. Invest.30, 353 (1951)

    Google Scholar 

  9. Farhi, L. E.: Ventilation-perfusion relationship and its role in alveolar gas exchange Advances of Respiratory Physiology. Arnold, London 1966

    Google Scholar 

  10. Fleisch, A.: Nouvelles Méthodes d'Etudes des Exchanges Gazeux et de la Fonction Pulmonaire. Schwabe, Basel 1954

    Google Scholar 

  11. Groom, A. C., Morin, R., Farhi, L. E.: Determination of dissolved N2 in blood and investigation of N2 washout from the body. J. Appl. Physiol.23, 706 (1967)

    Google Scholar 

  12. Hart, M. C., Orzales, M. M., Cook, C. D.: Relation between anatomic respiratory dead space and body size and lung volume. J. Appl. Physiol.18, 519 (1963)

    Google Scholar 

  13. Hedley-Whyte, J., Radford, E. P., Jr., Laver, M. B.: Nomogram for temperature correction or electrode calibration during pO2 measurements. J. Appl. Physiol.20, 785 (1965)

    Google Scholar 

  14. Holley, H. S., Milic-Emili, J., Becklake, M. R., Bates, D. V.: Regional distribution of pulmonary ventilation and perfusion in obesity. J. Clin. Invest.46, 475 (1967)

    Google Scholar 

  15. Hyde, R. W., Forster, R. E., Power, G. G., Nairns, J., Rynes, R.: Measurement of O2 diffusing capacity of the lungs with a stable O2 Isotope. J. Clin. Invest.45, 1178 (1966)

    Google Scholar 

  16. Hyde, R. W., Rynes, R., Power, G. G., Nairns, J.: Determination of distribution of diffusing capacity in relation to blood flow in the human lung. J. Clin. Invest.46, 463 (1967)

    Google Scholar 

  17. King, T. K. C., Briscoe, W. A.: Bohr integral isopleths in the study of blood gas exchange in the lung. J. Appl. Physiol.22, 659 (1967)

    Google Scholar 

  18. Lenfant, C.: Measurement of ventilation/perfusion distribution with alveolar-arterial differences. J. Appl. Physiol.18, 1090 (1963)

    Google Scholar 

  19. Nielsen, B., Nielsen, M.: Body temperature during work at different environmental temperature. Acta Physiol. Scand.56, 120 (1962)

    Google Scholar 

  20. Piiper, J., Haab, P., Rahn, H.: Unequal distribution of pulmonary diffusing capacity in the anesthetized dog. J. Appl. Physiol.16, 499 (1960)

    Google Scholar 

  21. Rahn, H., Fenn, W. O.: The oxygen-carbon dioxide diagram. WADC, p. 14/15. Technical Report 1953

  22. Rahn, H., Farhi, L. E.: Ventilation, perfusion, and gas exchange. The VA/Q concept. Handbook of Physiology, Respiration. sct. 3, vol. I, chapt. 30, p. 735. Washington DC: Am. Physiol. Soc., 1964

    Google Scholar 

  23. Riley, R. L., Cournand, A.: “Ideal” alveolar air and analysis of ventilation perfusion relationships in the lungs. J. Appl. Physiol.1, 825 (1948)

    Google Scholar 

  24. Ruff, F., Housley, E., Craig, D., Don, H., Becklake, M., Milic-Emili, J., Couture, J.: Airway closure and (A-a) D O2 in man. Proc. Internat. Union Physiol. Sci.9, 123 (1971)

    Google Scholar 

  25. Scherrer, M., Birchler, A.: Altersabhängigkeit des alveolo-arteriellen O2-Partialdruck-gradienten bei schwerer Arbeit in Normoxie, Hypoxie und Hyperoxie. Med. Thoracalis24, 99 (1967)

    Google Scholar 

  26. Scherrer, M., Haslimeier, P.: Alveolärer O2-Druck und O2-Diffusionskapazität. Schweiz. med. Wschr.98, 1282, 1968.

    Google Scholar 

  27. Severinghaus, J. W.: Blood gas concentrations. In: Handbook of Physiology. Respiration. sect. 3, vol. II, ch. 61, p. 1475–1487. Washington, DC: Am. Physiol. Soc., 1965

    Google Scholar 

  28. Sorbini, C. A., Grassi, V., Solinas, E., Muiesan, G.: The arterial oxygen tension in relation to age in healthy subjects. Respiration25, 1 (1968)

    Google Scholar 

  29. Thews, G., Witte, K.: Der Einfluß statistisch verteilter ungleicher O2-Diffusionswiderstände der Lungenmembran auf die O2-Diffusionskapazität. Beitr. Silikose-Forsch. Sonderband5, 329 (1963)

    Google Scholar 

  30. West, J. B., Dollery, C. T.: Distribution of blood flow and ventilation-perfusion ratio in the lung measured with radio-active CO2. J. Appl. Physiol.15, 405 (1960)

    Google Scholar 

  31. Witschi, H. P., Scherrer, M.: Bedeutung und Messung des alveolären Totraumes. Helv. Med. Acta27, 155 (1960)

    Google Scholar 

  32. Young, A. C.: Dead space at rest and during exercise. J. Appl. Physiol.8, 91 (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherrer, M. The CO2, O2, and N2 gradients between alveolar air and arterial blood during steady-state exercise in healthy non-smoking young and elderly men at normoxia and at hypoxia. Pneumologie 151, 233–240 (1974). https://doi.org/10.1007/BF02095389

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02095389

Key words

Navigation