Mathematical Geology

, Volume 27, Issue 5, pp 641–658 | Cite as

Comparison of approaches to spatial estimation in a bivariate context

  • Mustapha Asli
  • Denis Marcotte
Article

Abstract

The problem of estimating a regionalized variable in the presence of other secondary variables is encountered in spatial investigations. Given a context in which the secondary variable is known everywhere (or can be estimated with great precision), different estimation methods are compared: regression, regression with residual simple kriging, kriging, simple kriging with a mean obtained by regression, kriging with an external drift, and cokriging. The study focuses on 19 pairs of regionalized variables from five different datasets representing different domains (geochemical, environmental, geotechnical). The methods are compared by cross-validation using the mean absolute error as criterion. For correlations between the principal and secondary variable under 0.4, similar results are obtained using kriging and cokriging, and these methods are superior slightly to the other approaches in terms of minimizing estimation error. For correlations greater than 0.4, cokriging generally performs better than other methods, with a reduction in mean absolute errors that can reach 46% when there is a high degree of correlation between the variables. Kriging with an external drift or kriging the residuals of a regression (SKR) are almost as precise as cokriging.

Key words

cokriging kriging with an external drift cross validation regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S., and de Marsily, G., 1987, Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capcity: Water Resources Research, v. 23, no. 9, p. 1717–1737.Google Scholar
  2. Beaumier, M., 1987, Géochimie des sédiments de lac de la région de Schefferville: MB 87-32. M.E.R.Q., 382 p.Google Scholar
  3. Castelier, E., 1993, Dérive externe et régression linéaire: Compte-rendu des journées de géostatistique (25–26 mai 1993), Fontainebleau: Cahiers de géostatistique, Fascicule 3, p. 47–59.Google Scholar
  4. Creutin, J. D., Andrieu, H., and Delerieu, G., 1989, Une simplification du cokrigeage appliquée à l'étalonnage d'images de télédétection en hydrométéorologie,in Armstrong, M., ed., Geostatistics (Vol. 2): Kluwer Acad. Publ., Dordrect, p. 761–772.Google Scholar
  5. David, M., 1977, Geostatistical ore reserve estimation: Elsevier Sci. Publ. Co., New York, 364 p.Google Scholar
  6. David, M., Marcotte, D., and Soulié, M., 1984, Conditional bias in kriging and a suggested correction,in Verly, G., and others, ed., Geostatistics for natural resources characterisation: Reidel Publ. Co., Dordrecht, p. 217–230.Google Scholar
  7. Delerieu, G., Bellon, A., and Creutin, J. D., 1988, Estimation de lames d'eau spatiales à l'aide de données de pluviométrie et de radar météorologique: Applications au pas de temps journalier dans la région de Montréal: Jour. Hydrol., v. 98. no. 3–4, p. 315–344.Google Scholar
  8. Delfiner, P., Delhomme, J. P., and Pelissier Combescure, J., 1983, Application of geostatistical analysis to the evaluation of petroleum reservoirs with well logs: 24th Annual Login Symposium (Calgary, Canada), v. 24, no. 1, p. WW1-WW26.Google Scholar
  9. Delhomme, J. P., 1979, Étude de la géométrie du réservoir de Chemery: Internal Report, Centre d'Informatique Géologique. École des Mines de Paris, Fontainebleau, Rept. LHM/RD/79/41, unpaginated.Google Scholar
  10. Deutsch, C., 1991, External drift- the inside story: Geostatistics (an interdisciplinary geostatistics) Newsletter, v. 5, p. 2.Google Scholar
  11. Draper, N. R., and Smith, H., 1981, Applied regression analysis (2nd ed.): John Wiley & Sons, New York, 709 p.Google Scholar
  12. Englund, E., and Sparks, A., 1988, GEO-EAS (Geostalistical Environmental Assessment Software), User's Guide: Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, EPA 4-88 033, 196 p.Google Scholar
  13. Galli, A., and Meunier, G. 1987, Study of a gas reservoir using the external drift method,in Matheron, G., and Armstrong, M., eds., Geostatistical case studies. D. Reidel Publ. Co., Dordrecht, p. 105–119.Google Scholar
  14. Gallichand, J., Buckland, G. D., Marcotte, D., and Hendry, M. J., 1992, Spatial interpolation of soil salinity and sodicity for a saline soil in southern Alberta: Can. Jour. Soil Sci., v. 72, no. 4. p. 503–516.Google Scholar
  15. Grunsky, E. C., 1986a, Recognition of alteration in volcanic rocks using statistical analysis of lithogeochemical data: Jour. Geochemical Exploration, v. 25, no. 1–2, p. 157–183.Google Scholar
  16. Grunsky, E. C., 1986b, Recognition of alteration in volcanic rocks using statistical analysis of lithogeochemical data,in Wood, J., and Wallace, H., eds., Volcanology and mineral exploration: Ontario Geol. Survey, Misc. Papers, p. 124–173.Google Scholar
  17. Istok, J. D., Smyth, J. D., and Flin, A. L., 1993, Multivariate geostatistical analysis of groundwater contamination: a case history: Ground Water, v. 31, no. 1, p. 63–74.Google Scholar
  18. Jensen, L. S., 1975, Geology of Clifford and Ben Nevis townships, District of Cochrane, Ontario: Div. Mines, GR132, 55 p. (accompanied by Map 2283).Google Scholar
  19. Journel, A. G., 1984, MAD and conditional quantiles estimators,in Verly, G., ed., Proc. NATO ASI, geostatistics for natural resources characterisation: Reidel, Dordecht, Holland, p. 261–270.Google Scholar
  20. Journel, A. G., and Huijbregts, C. J., 1978, Mining geostatistics: Academic Press, London, 600 p.Google Scholar
  21. Kirsch, Ch., and Pawlowsky, V., 1985, Modélisation de variogrammes croisés—comment satisfaire à l'inégalité de Cauchy-Schwartz: Sciences de la Terre, v. 24, p. 53–62.Google Scholar
  22. Maréchal, A., 1984, Kriging seismic data in presence of faults,in Verly, G., ed., Proc. NATO ASI, geostatistics for natural resources characterisation: Reidel, Dordrecht, Holland, p. 271–294.Google Scholar
  23. Marcotte, D., 1991, Cokriging with matlab: Computers & Geosciences, v. 17. no. 9, p. 1265–1280.Google Scholar
  24. Matheron, G., 1965, Les variables régionalisées et leur estimation, une application des fonctions aléatoires aux sciences de la nature: Masson, Paris, 1305 p.Google Scholar
  25. Matheron, G., 1970, La théorie des variables régionalisées et ses applications: Fascicule No. 5, Cahier du Centre de Morphologie Mathématique de Fontainbleau, 212 p.Google Scholar
  26. Matheron, G. 1979, Recherche de simplification dans un problème de cokrigeage: Publ. N-628, Centre de Géostatistique. École des Mines de Paris, Fontainebleau, 19 p.Google Scholar
  27. Morton, D. M., Baird, A. K., and Baird, K. W., 1969, The Lakeview Mountains Pluton, Southern California Batholith, II. Chemical composition and variation: Geol. Soc. America Bull., v. 80, no. 8, p. 1553–1564.Google Scholar
  28. Myers, D., 1982, Matrix formulation of co-kriging: Math. Geology, v. 14, no. 3, p. 249–257.Google Scholar
  29. Ouellet, J., 1985, Répartition spatiale des propriétés mécaniques des roches: Mémoire de Maîtrise es Sciences Appliquées, École Polytechnique de Montréal, 172 p.Google Scholar
  30. Stein, A., Dooremolen, W. V., Bouma, J., and Bregt, A. K., 1988, Cokriging point data on moisture deficit: Soil Sci. Soc. Am. Jour., v. 52, no. 5, p. 1418–1423.Google Scholar
  31. Vauclin, M., Vieira, S. R., Vachaud, G., and Nielsen, D. R., 1983, The use of cokriging with limited field soil observations: Soil Sci. Soc. Am. Jour., v. 47, no. 2, p. 175–184.Google Scholar
  32. Wackernagel, H., 1994, Cokriging versus kriging in regionalized multivariate data analysis: Geo-Derma, v. 62, no. 1–3, p. 83–92.Google Scholar
  33. Wolfe, W. J., 1977, Geochemical exploration of early precambrian sulphide mineralization in Ben Nevis Township, District of Cochrane: Ontario Geol. Survey, Study 19, 39 p.Google Scholar
  34. Yates, M. V., and Yates, S. R., 1987, A comparison of geostatistical methods for estimating virus inactivation rates in ground water: Water Res., v. 21, no. 9, p. 1119–1125.Google Scholar
  35. Yates, S. R., and Warrick, A. W., 1987, Estimating soil water content using cokriging: Soil Sci. Soc. Am. Jour., v. 51, no. 1, p. 23–30.Google Scholar
  36. Zhang, R., Warrick, A. W., and Myers, D. E., 1992. Improvement of the prediction of soil particle size fractions using spectral properties: Geoderma, v. 52, no. 3–4, p. 223–234.Google Scholar

Copyright information

© International Association for Mathematical Geology 1995

Authors and Affiliations

  • Mustapha Asli
    • 1
  • Denis Marcotte
    • 1
  1. 1.Ecole PolytechniqueMontrealCanada

Personalised recommendations