Advertisement

Periodica Mathematica Hungarica

, Volume 33, Issue 2, pp 153–161 | Cite as

Estimations for the number of cycles in a graph

  • Lutz Volkmann
Article

Mathematics subject classification numbers, 1991

Primary 05C38 

Key words and phrases

Undirected graph cycle minimum degree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.Ahrens, Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung,Math. Ann. 49 (1897), 311–324.Google Scholar
  2. [2]
    J. A.Bondy and U. S. R.Murty,Graph Theory with Applications, The Macmillan Press LTD, London and Basingstoke, 1976.Google Scholar
  3. [3]
    R. C.Entringer and P. J.Slater, On the maximum number of cycles in a graph,Ars Combin. 11, (1981), 289–294.Google Scholar
  4. [4]
    F.Harary,Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.Google Scholar
  5. [5]
    F.Harary and B.Manvel, On the number of cycles in a graph,Matematicky Casopis Sloven. Akad. Vied. 21 (1971), 55–63.Google Scholar
  6. [6]
    G.Kirchhoff, Uber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird,Annalen der Physik und Chemie 72 (1847), 497–508.Google Scholar
  7. [7]
    D.König,Theorie der endlichyen und unendlichen Graphen, Akademische Verlagsgesellschaft M.B.H., Leipzig, 1936.Google Scholar
  8. [8]
    P.Mateti and N.Deo, On algorithms for enumerating all circuits of a graph,SIAM J. Comput. 5, 1 (1976), 90–99.Google Scholar
  9. [9]
    K. B.Reid, Cycles in the complement of a tree,Discrete Math. 15 (1976), 163–174.Google Scholar
  10. [10]
    B.Zhou, The maximum number of cycles in the complement of a tree,Discrete Math. 69 (1988), 85–94.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Lutz Volkmann
    • 1
  1. 1.Lehrstuhl II für MathematikRWTH AachenAachenGermany

Personalised recommendations