Periodica Mathematica Hungarica

, Volume 33, Issue 2, pp 121–134 | Cite as

On the equationa3+b3+c3=d3

  • Csaba Sándor

Mathematics subject classification numbers, 1991

Primary 11D25 

Key words and phrases

Diophantine equation parametric solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dickson,History of the Theory of Numbers, Volume 2., New York, Chelsea (1952).Google Scholar
  2. [2]
    Hardy, Wright,An Introduction to the Theory of Numbers, Oxford (1965).Google Scholar
  3. [3]
    Ögmundsson, A complete integral solution ofx 3+y 3=u 3+v 3,Nordisk Mat. Tidsk. 13 (1965), 88–90.Google Scholar
  4. [4]
    Kesava, Menon, On the equationX 3+Y 3=U 3+V 3,Math. Student 23 (1955) 101–103.Google Scholar
  5. [5]
    Zajta, On the Solution of the Diophantine EquationA 2+B 3+C 3+D 3=0,Journal of Number Theory 7 (1975), 375–380.Google Scholar
  6. [6]
    Agostinelli, Sulla risoluzione per numeri interi della equazionex 3+y 3=u 3+v 3,Atti Accad. Naz. Lincei Rend Cl. Sci. fis. mat. nat. 59, (1975), 635–642.Google Scholar
  7. [7]
    Kubiček, Eine einfache Lösung der diophantischen GleichungA 3+B 3+C 3=D 3,Časopis Pěst Mat. 99 (1974), 177–178.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Csaba Sándor
    • 1
  1. 1.BudapestHungary

Personalised recommendations